Results of a Phase 1b/2 Study of Entospletinib Monotherapy and In Combination With Induction Chemotherapy In Newly Diagnosed Patients With Acute Myeloid Leukemia

Alison R. Walker¹, John C Byrd¹, Bhavana Bhatnagar¹,Alice Mims¹,Tara Lin², Howland E. Croswell³, Danjie Zhang⁴, Arati V. Rao⁴, Mark D Minden⁵, William Blum⁶

¹The Ohio State University, Columbus, Ohio, USA; ²University of Kansas Medical Center, Kansas City, Kansas, USA; ³Bon Secours St. Francis Health System, Greenville, South Carolina, USA; ⁴Gilead Sciences, Inc., Foster City, California, USA; ⁵Princess Margaret Cancer Centre, Toronto, Ontario, Canada; ⁶Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
Background

- Acute myeloid leukemia (AML) is both a biologically and clinically heterogeneous hematologic malignancy.
- The identification of recurrent cytogenetic and molecular mutations has not only led to insights into leukemogenesis, but has identified potential therapeutic targets.
- Current treatment paradigms attempt to individualize therapy rather than a “one fits all” approach.

Investigating SYK as Critical Signaling Node in AML
Role of SYK in AML

- Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase primarily expressed in hematopoietic cells.

- Constitutive activation of SYK in AML has been reported; targeted inhibition of SYK-induced differentiation in vitro demonstrated anti-leukemia activity in AML mouse models.

- SYK promotes leukemogenesis by directly phosphorylating the FLT3 receptor, and inducing MEIS1 in conjunction with HOXA9 to form a regulatory loop in KMT2A (mixed lineage leukemia [MLL]) rearranged leukemia.

Entospletinib (ENTO): an Orally Bioavailable, Selective Inhibitor of SYK with Activity in Myeloid and B-lymphoid Malignancies

ENTO: Syk-selective

Syk $K_d = 7.6$ nM

No other kinases with $K_d < 100$ nM

R406: non-selective

Syk $K_d = 15$ nM

24 kinases with $K_d < 15$ nM

54 additional kinases with $K_d < 100$ nM

- **ENTO exposures approach a plateau above 600 mg BID**
- Biliary excretion is the major route of elimination
- Absorption is highly pH dependent: drug-drug interaction with PPIs- they decrease the absorption of ENTO by ~60%
- ENTO is an inhibitor of UGT1A1
- Clinical interactions with CYP inhibitors: CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, or CYP3A

CYP, cytochrome p450; K_d, dissociation constant; PPI, proton pump inhibitor; UGT1A1, uridine diphosphate glucuronosyltransferase 1-1
Study Objectives

♦ Primary
 – To demonstrate the overall safety (Phase 1) and efficacy (Phase 2) of entospletinib in combination with standard dose cytarabine and daunorubicin chemotherapy (7+3) in patients with previously untreated AML fit for chemotherapy

♦ Secondary
 – To assess qualitative and quantitative toxicities of entospletinib as monotherapy and in combination with 7+3
 – To document therapeutic response of patients treated with ENTO as monotherapy and in combination with 7+3
Screen → Lead-in ENTO 14 d → Cycle 1–2 ENTO +7+3 → Post-Remission Therapy

- Treatment Failure (if completed 2 cycles of combination Rx)

- CR/CRi → No CR

- Allogeneic Stem Cell Transplant
 - ENTO + HiDAC*
 - CR MRD+
 - Maintenance ENTO x 1 y

- Phase 1b n=12
 - No acute promyelocytic (M3) or core binding factor leukemias

- Phase 2 n=41
 - All AML patients except M3

*HiDAC: 3 gm/m² <60 y; 1 gm/m² ≥60 y. CR, complete response; MRD, minimal residual disease.
Results: Demographics and Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total N=53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male, n (%)</td>
<td>31 (58)</td>
</tr>
<tr>
<td>Median age, y (range)</td>
<td>60 (18, 78)</td>
</tr>
<tr>
<td><60 y, n (%)</td>
<td>26 (49)</td>
</tr>
<tr>
<td>≥60 y, n (%)</td>
<td>27 (51)</td>
</tr>
<tr>
<td>White/Caucasian, n (%)</td>
<td>47 (89)</td>
</tr>
<tr>
<td>ECOG performance status, n (%)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>24 (45)</td>
</tr>
<tr>
<td>1</td>
<td>27 (51)</td>
</tr>
<tr>
<td>2</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Risk-group per ELN criteria, n (%)</td>
<td></td>
</tr>
<tr>
<td>Favorable</td>
<td>7 (13)</td>
</tr>
<tr>
<td>Intermediate I</td>
<td>16 (30)</td>
</tr>
<tr>
<td>Intermediate II</td>
<td>12 (23)</td>
</tr>
<tr>
<td>Adverse</td>
<td>18 (34)</td>
</tr>
<tr>
<td>Secondary AML, n (%)</td>
<td>14 (26)</td>
</tr>
</tbody>
</table>

ECOG, Eastern Cooperative Oncology Group; ENL, European Leukemia Net.
Results: CR Rates by ELN Risk Group

<table>
<thead>
<tr>
<th>ELN Risk-Group</th>
<th>ENTO+7+3 CR% (n=53)</th>
<th>Historical (7+3 regimens) CR%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favorable-risk</td>
<td>86</td>
<td>87</td>
</tr>
<tr>
<td>Intermediate-I</td>
<td>81</td>
<td>65</td>
</tr>
<tr>
<td>Intermediate-II</td>
<td>75</td>
<td>74</td>
</tr>
<tr>
<td>Adverse-risk</td>
<td>50</td>
<td>46</td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
<td>63</td>
</tr>
</tbody>
</table>

*Adjusted to patients per age and risk-groups in our Phase 1b/2 study
Results: CR Rates in Specific Molecular Subgroups

<table>
<thead>
<tr>
<th>Molecular Sub-Group</th>
<th>N</th>
<th>CR %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary AML</td>
<td>14</td>
<td>64</td>
</tr>
<tr>
<td>De novo AML</td>
<td>39</td>
<td>72</td>
</tr>
<tr>
<td>KMT2A/MLL</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>NPM1+*</td>
<td>15</td>
<td>87</td>
</tr>
<tr>
<td>FLT3-ITD+</td>
<td>6</td>
<td>83</td>
</tr>
</tbody>
</table>

*4 patients with solitary NPM1+ without any concomitant mutations
Results: Disposition After ENTO + 7+3

<table>
<thead>
<tr>
<th>n (%)</th>
<th>Total N=53</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of induction cycles</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>42 (79)</td>
</tr>
<tr>
<td>2</td>
<td>9 (17)</td>
</tr>
<tr>
<td>Received allogeneic SCT</td>
<td>18 (34)</td>
</tr>
<tr>
<td>No. of post-remission HiDAC cycles</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6 (11)</td>
</tr>
<tr>
<td>2</td>
<td>2 (4)</td>
</tr>
<tr>
<td>3</td>
<td>7 (13)</td>
</tr>
<tr>
<td>Received ENTO monotherapy maintenance</td>
<td>6 (11)</td>
</tr>
</tbody>
</table>
ENTO Lead-in: No Effect on Efficacy

- No benefit as monotherapy: only 1 out of 53 patients responded to monotherapy

- 9 patients (17%) required hydroxyurea during lead-in

- 15 patients (28%) did not get full 14 days of lead-in ENTO either due to physician or patient preference
Overall Survival: After Median Follow-up of 14.3 Months Median OS Was Not Reached for Phase 1b/2 AML Patients (n=53)
Relapse-Free Survival: After Median Follow-Up of 13 Months
Median RFS is 7.7 Months for Phase 1b/2 AML Patients (n=53)
Safety: Grade ≥3 Treatment-Emergent Hematologic Toxicity
Adverse Events and Lab Abnormalities

- Adverse events consistent with expected effects of a myelosuppressive chemotherapy regimen

- 30-day induction mortality 0 %

<table>
<thead>
<tr>
<th>Grade ≥ 3 hematologic toxicity, n (%)</th>
<th>Total N=53 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Febrile neutropenia</td>
<td>44 (83)</td>
</tr>
<tr>
<td>Anemia</td>
<td>28 (53)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>41 (77)</td>
</tr>
</tbody>
</table>
Safety: Grade ≥ 3 Treatment-Emergent Lab Abnormalities and Non-hematologic toxicity

<table>
<thead>
<tr>
<th>Grade ≥ 3 non-hematologic toxicity, n (%)</th>
<th>Total N=53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypophosphatemia</td>
<td>8 (15)</td>
</tr>
<tr>
<td>Hyperbilirubinemia</td>
<td>6 (11)</td>
</tr>
<tr>
<td>ALT increased</td>
<td>3 (6)</td>
</tr>
<tr>
<td>AST increased</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Rash</td>
<td>7 (13)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>5 (9)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>3 (6)</td>
</tr>
<tr>
<td>Nausea</td>
<td>1 (2)</td>
</tr>
</tbody>
</table>

ALT, alanine aminotransferase; AST, aspartate aminotransferase.
High H/M Expression in Phase 1b/2 AML Patients with MLL-R, NPM1, and FLT3-ITD Mutation

<table>
<thead>
<tr>
<th>Mutation*</th>
<th>CR %</th>
<th>CR/Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLL-R</td>
<td>90</td>
<td>9/10</td>
</tr>
<tr>
<td>NPM1</td>
<td>87</td>
<td>13/15</td>
</tr>
<tr>
<td>FLT3-ITD</td>
<td>83</td>
<td>5/6</td>
</tr>
</tbody>
</table>

*Some patients have multiple mutations.
Conclusions

♦ CR rate 70% in untreated fit AML patients treated with ENTO+7+3

♦ Overall ENTO is well tolerated and 30-day induction mortality 0%

♦ Higher response rates with SYK inhibition in AML patients with high HOXA9/MEIS1 expression

♦ Potential role in subsets of AML: KMT2A/MLL and NPM1. Further development ongoing with the Leukemia Lymphoma Society and the BEAT-AML program
Acknowledgments

We extend our thanks to the patients and their families.

These studies were funded by Gilead Sciences, Inc.

We extend our thanks to Steve Abella, MD and A. Mario Marcondes, MD PhD for their help with the design and conduct of this study
BACK UP
CR rates stratified by age and ELN risk-group

<table>
<thead>
<tr>
<th>Age Group</th>
<th>ELN Risk-Group</th>
<th>Phase 1 n=12</th>
<th>Phase 2 n=41</th>
<th>Combined CR%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 60 yr</td>
<td>Favorable-risk CR/total</td>
<td>1/1</td>
<td>1/1</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Intermediate-I CR/total</td>
<td>0/0</td>
<td>4/4</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Intermediate-II CR/total</td>
<td>3/3</td>
<td>4/5</td>
<td>87.5%</td>
</tr>
<tr>
<td></td>
<td>Adverse-risk CR/total</td>
<td>2/3</td>
<td>3/9</td>
<td>42%</td>
</tr>
<tr>
<td></td>
<td>Combined CR/total</td>
<td>6/7 (86%)</td>
<td>12/19 (63%)</td>
<td>69%</td>
</tr>
<tr>
<td>Age >= 60 yr</td>
<td>Favorable-risk CR/total</td>
<td>2/2</td>
<td>2/3</td>
<td>80%</td>
</tr>
<tr>
<td></td>
<td>Intermediate-I CR/total</td>
<td>0/0</td>
<td>9/12</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>Intermediate-II CR/total</td>
<td>1/1</td>
<td>1/3</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>Adverse-risk CR/total</td>
<td>1/2</td>
<td>3/4</td>
<td>67%</td>
</tr>
<tr>
<td></td>
<td>Combined CR/total</td>
<td>4/5 (80%)</td>
<td>15/22 (68%)</td>
<td>70%</td>
</tr>
</tbody>
</table>

| Total | 10/12 (83%) | 27/41 (66%) | 70% |