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The implementation of targeted therapies for acute myeloid leukaemia (AML) has been challenging because of the complex 
mutational patterns within and across patients as well as a dearth of pharmacologic agents for most mutational events. 
Here we report initial findings from the Beat AML programme on a cohort of 672 tumour specimens collected from 562 
patients. We assessed these specimens using whole-exome sequencing, RNA sequencing and analyses of ex vivo drug 
sensitivity. Our data reveal mutational events that have not previously been detected in AML. We show that the response 
to drugs is associated with mutational status, including instances of drug sensitivity that are specific to combinatorial 
mutational events. Integration with RNA sequencing also revealed gene expression signatures, which predict a role for 
specific gene networks in the drug response. Collectively, we have generated a dataset—accessible through the Beat 
AML data viewer (Vizome)—that can be leveraged to address clinical, genomic, transcriptomic and functional analyses 
of the biology of AML.

Approximately 21,000 people are diagnosed with AML and over 10,000 
AML-related deaths are reported annually in the United States1,2. 
Cytogenetic and sequencing analyses have revealed at least 11 genetic 
classes of AML3 and over 20 subsets can be assigned when also con-
sidering cell differentiation states of the leukaemic blasts4,5. Deep 
sequencing of AML by The Cancer Genome Atlas (TCGA) revealed 
a heterogeneous disease with nearly 2,000 somatically mutated genes 
observed across 200 patients6. Many of the recurrent cytogenetic 
events and somatic mutations have been shown to carry prognostic 
importance3,7,8. Some of the most frequent somatic variants can also 
be observed in myelodysplastic syndromes and myeloproliferative neo-
plasms9–11 that can transform into AML. These same mutations have 

also been observed in healthy individuals who have age-related clonal 
haematopoiesis, which is associated with significant risk for the devel-
opment of myelodysplastic syndromes, myeloproliferative neoplasms 
and AML12–15.

A small number of therapies targeted to mutational events have 
been developed for patients with AML, although the current standard  
of care remains largely unchanged over the past 30–40 years. The 
first targeted therapy for AML involved use of all-trans retinoic acid 
in combination with arsenic trioxide for patients with rearrangement 
of the retinoic acid receptor16,17. More recently, fms-related tyrosine 
kinase 3 (FLT3) inhibitors have been developed for FLT3 mutational 
events that occur in approximately 20–30% of patients with AML18–21. 
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When FLT3 inhibitors were used as single agents, responses of only 
2–6 months were obtained22–25. Midostaurin, a broad-spectrum FLT3 
inhibitor, was recently approved for use in newly diagnosed patients 
with AML with FLT3 mutations, in combination with standard of care 
chemotherapy26; however, relapse was still prevalent in this setting. 
Targeting of a mutant form of isocitrate dehydrogenase (NADP(+))  
1 and 2, cytosolic (IDH1 and IDH2)27, has shown clinical benefit 
leading to approval of the IDH2 inhibitor, enasidenib, and the IDH1 
inhibitor, ivosidenib28,29. Additional proposed strategies have included 
inhibition of epigenetic modifiers, such as enhancer of zeste 2 poly-
comb repressive complex 2 subunit (EZH2)30, lysine demethylase 
1A (KDM1A)31, and DOT1-like histone lysine methyltransferase 
(DOT1L)32, based on the direct mutation of these targets or synthetic 
lethality in the context of drug combinations (all-trans retinoic acid 
and KDM1A inhibitors) or specific genetic features (lysine methyl-
transferase 2A (KMT2A)-gene rearrangement for DOT1L inhibitors). 
Hypomethylating agents have been used in patients with AML, for 
which better responses have been reported for certain genetic subsets, 
such as those with mutations in TET233 or tumour protein 53 (TP53)34. 
Most recently, an inhibitor of the BCL2 apoptosis regulator (BCL2), 
venetoclax, showed an approximately 20% response rate when used 
as a single agent in patients with a relapse35 and higher response rates 
(around 60%) were reported in combination with hypomethylating 
agents in newly diagnosed, elderly patients with AML36.

Comparative genomic landscape of AML
To better understand genetic or transcriptional markers and mecha-
nisms of drug sensitivity and resistance in AML, we developed a cohort 

of 672 primary specimens from 562 patients with AML and we per-
formed extensive functional and genomic analyses on these samples. 
Detailed clinical annotations, including diagnostic information, clinical 
laboratory values, treatments, responses and outcomes were curated 
from electronic medical records and are reported in Supplementary 
Tables 1–5.

We performed exome sequencing on 622 of the specimens from the 
cohort representing 531 different patients. The final, high-confidence 
variant list (Supplementary Table 7) revealed a range of 1–80 somatic 
variants per patient (cohort median of 13 somatic variants) (Extended 
Data Fig. 1). Comparison of the top 33 most commonly mutated genes 
across Beat AML and TCGA6 showed generally similar frequencies. 
Higher frequency of mutations in serine- and arginine-rich splicing fac-
tor 2 (SRSF2) were seen in Beat AML than in TCGA, and this difference 
was conserved when only the de novo cases in Beat AML and TCGA 
were compared (Fig. 1a). By contrast, mutational events that were seen 
with a frequency of less than 2% across Beat AML and TCGA were 
much more divergent; variants in 221 mutant genes were called in both 
datasets, 939 mutant genes were called only in TCGA and around 1,500 
mutant genes were called only in Beat AML, irrespective of whether 
we compared only de novo or non-de novo cases (Fig. 1b, c). Most of 
these divergent mutational events were observed only in single patients; 
however, there were mutations in 11 genes that were called in 1% or 
more of patients in Beat AML, but were not observed in previous AML 
sequencing studies (Extended Data Fig. 1). Finally, co-occurrence and 
exclusivity of the most frequent variants were computed and reveal 
significant patterns of mutational co-segregation, suggesting biological 
cooperation between certain mutational events (Fig. 1d).
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Fig. 1 | Comparative genomic landscape of AML. a, Frequency of the 
33 mutational events that were cumulatively the most frequent in Beat 
AML (n = 531 patients) and TCGA (n = 200 patients) datasets. Top, the 
full Beat AML cohort; middle, only the de novo Beat AML cases; bottom, 
de novo cases in the TCGA. Mutations were summarized by gene as was 
done by TCGA, whereas the FLT3-ITD mutations were kept separate in 
the rest of this manuscript. b, Mutational events at 2% frequency or less 
in the de novo cases of Beat AML and TCGA were compared for overlap. 
Venn diagram displays the overlap with the small circles within each 

compartment representing a size-scaled frequency of each mutational 
event. c, Analysis as in b with only the non-de novo Beat AML cases versus 
TCGA. d, Co-occurrence or exclusivity of the most recurrent mutational 
events in the Beat AML cohort (n = 531 patients) were assessed using the 
DISCOVER41 method. The dot plot shows the odds ratio of co-occurrence 
(blue) or exclusivity (red) using colour-coding and circle size as well as 
asterisks that indicate FDR-corrected statistical significance. *P < 0.1; 
**P < 0.05; ***P < 0.01.
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Drug response and gene expression
RNA sequencing was performed on 451 specimens from 411 patients. 
Clustering of the 2,000 most variably expressed genes across the cohort 
revealed gene expression signatures that were associated with many 
of the prominent genetic and cytogenetic disease groups (Extended 
Data Fig. 2). To understand the profile of sensitivity and resistance to 
a variety of small-molecule inhibitors, we profiled primary tumour 
cells from 409 specimens derived from 363 patients against a panel of 
122 small-molecule inhibitors using an ex vivo drug sensitivity assay37. 
Drug sensitivity patterns were analysed with respect to clinical and 
genetic features of tumours (Extended Data Fig. 3). We compared the 
average area-under-the curve (AUC) values for each drug between 
samples from cases with de novo AML and cases with AML that had 
transformed from myelodysplastic syndromes or myeloprolifera-
tive neoplasms, through a series of single-factor analysis of variance 
(ANOVA) tests. Generally, transformed cases showed less sensitivity  
than de novo cases to most drugs. Of the 122 drugs tested, 64 were 
significantly (false discovery rate (FDR) < 0.1) more sensitive in the 
de novo samples, whereas only one drug—panobinostat (an HDAC 
inhibitor)—was significantly more sensitive in the transformed cases 
(Extended Data Fig. 4). In addition, we analysed the concordance of 
drug sensitivity patterns with respect to predicted target gene, gene 
family or pathway for each drug (drug assignments to target families 
can be found in Supplementary Table 11). This analysis revealed drug 
targets and/or drug families that were highly concordant among con-
stituent members, as well as drug families that were quite discordant 

(Extended Data Fig. 5). To create a global view of overall sensitivity or 
resistance for each case, we generated a heat map of binary sensitive or 
resistant calls for each sample to each drug. We then annotated the sen-
sitive or resistant fraction of each case against the European Leukaemia 
Net (ELN) 20175 (Extended Data Fig. 6a) and WHO (World Health 
Organization) 20164 (Extended Data Fig. 6b) classifications.

Gene signatures of drug responses
We performed a cohort analysis to assess the correlation between drug 
sensitivity patterns and mutational events or gene expression levels. 
Correlation analyses between drug sensitivity and mutational events 
were performed by assessing the range of sensitivity of cases with a 
mutation in an individual gene (as well as co-occurring mutational 
events) versus cases with the wild-type sequence for that same gene. 
Broad summaries of full cohort results are displayed in Circos and 
Manhattan plots (Extended Data Figs. 7a, 8). Individual associations 
between drugs and mutations are displayed as a Volcano plot, in which 
the differences in drug sensitivity between mutant and wild-type genes  
and the FDR-corrected significance values38 are plotted (Fig. 2a). 
Some of the associations with the highest levels of statistical signifi-
cance involved FLT3 internal tandem duplications (FLT3-ITD) and 
these showed sensitivity to FLT3 pathway inhibitors, which serves as 
a proof-of-principle as FLT3 inhibitors are known to be more effec-
tive against FLT3-ITD AML. However, to reveal associations between  
drugs and mutations that were not biased by the co-occurrence with 
FLT3-ITD, we also plotted the same analysis using only cases that had 
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Fig. 2 | Integration of genetic events with drug sensitivity. a, Average 
difference in AUC drug response between mutant and wild-type cases was 
determined using a Student’s two-sided t-test from a linear model fit  
(x axis). The P values were corrected using the Benjamini–Hochberg 
method over all the drugs (y axis). The number of samples used to 
correlate each mutational event with drug sensitivity is reported in the 
Supplementary Table 17. Expanded and interactive plots are available in 
our online data browser (http://www.vizome.org/ and http://vizome.org/
additional_figures_BeatAML.html). b, AUCs for ibrutinib or entospletinib 
(n = 277 or 168 patient samples, respectively) were plotted for cases 
with single, double or triple mutations in NPM1 and DNMT3A as well as 

FLT3-ITD. Data are mean ± s.d. An ANOVA was conducted using the 
Bonferroni approach (statistical results and sample size for all groups 
are reported in Supplementary Tables 18, 19). c, Inhibitors of JAK family 
kinases were assessed for activity against cases with BCOR mutations alone 
or BCOR mutations in combination with mutations in SRSF2, RUNX1 
or DNMT3A. The AUC values are plotted per case; data are mean ± s.d. 
There was a significant difference in AUC; two-sided Student’s t-test 
(t42 = −2.489, P = 0.0168, 95% confidence interval −73.018 to −7.643) 
between mutations in BCOR and RUNX1 (n = 16) versus the average of 
BCOR mutations alone (n = 16), mutations in BCOR and SRSF2 (n = 8), 
and mutations in BCOR and DNMT3A (n = 4).
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wild-type FLT3 (Extended Data Fig. 7b). We also created Volcano plots 
that were specific to each individual drug (versus all mutational events) 
and for each individual gene (versus all drugs tested). All Volcano 
plots can be found with interactive features in our online data browser 
(http://www.vizome.org/ and http://vizome.org/additional_figures_
BeatAML.html).

Mutations in several genes, most notably TP53 or ASXL transcrip-
tional regulator 1 (ASXL1), were shown to cause a broad pattern of drug 
resistance. Notably, a few drugs trended to be more sensitive to cases 
with TP53 mutations (such as elesclemol) or with mutations in ASXL1 
(such as panobinostat), suggesting candidates for further exploration of 
cases with AML that have these poor prognostic features. Mutations in 
the NRAS proto-oncogene, GTPase (NRAS) or KRAS proto-oncogene, 
GTPase (KRAS) also correlated with resistance to most drugs, although 
mutations in these genes did show the predicted sensitivity to MAPK 
inhibitors. Of particular note, there was a stronger association between 
mutations in NRAS and MAPK sensitivity than between mutations 
in KRAS and MAPK sensitivity. IDH2 mutations conferred sensitivity 
to a broad spectrum of drugs, whereas mutations in IDH1 conferred 
resistance to most drugs. Mutations in RUNX1 correlated with sen-
sitivity to PIK3C and mTOR inhibitors (such as BEZ235) and to the 
multi-kinase vascular endothelial growth factor receptor (VEGFR) 
inhibitor, cediranib. Mutation in the splicesome components U2 small 
nuclear RNA auxiliary factor 1 (U2AF1) and zinc-finger CCCH-type, 
RNA-binding motif and serine/arginine rich 2 (ZRSR2) correlated 
with sensitivity to several drugs. The mechanisms that underlie these 
latter sensitivity correlations (and many others in the dataset) merit 
further investigation. A significant association was seen between muta-
tions in FLT3, NPM1 and DNMT3A and sensitivity to the Food and 
Drug Administration (FDA)-approved drug, ibrutinib. Because these 
mutations exhibit a significant pattern of co-occurrence, we next exam-
ined every combination of single, double or triple mutant genes with 
respect to ibrutinib. We observed that DNMT3A alone or DNMT3A 
and FLT3 double-mutant cases were not significantly different from 
cases with wild-type genes, whereas cases with FLT3-ITD alone or any 
combination with a mutation in NPM1 (including cases in which all 

three genes were mutated) were significantly more sensitive than cases 
with wild-type genes (Fig. 2b). Ibrutinib is an inhibitor of BTK and 
TEC family kinases, although it can exhibit broad off-target effects 
when maintained in continuous culture with target cells. We noted 
that another kinase inhibitor with high specificity for spleen-associated 
tyrosine kinase (SYK)—entospletinib—showed a similarly significant 
pattern of sensitivity in cases with FLT3-ITD and mutations in NPM1 
(Fig. 2b), potentially pointing to an operationally important target for 
this disease subset. Indeed, previous studies have suggested that SYK 
is an interacting target of FLT3-ITD in AML39. Finally, we performed 
an additional analysis that leveraged multiple inhibitors with common 
targets to see whether this approach could identify additional associ-
ations. We focused on correlations between the four selective Janus 
kinase (JAK) inhibitors in our drug panel (momelotinib, ruxolitinib,  
tofacitinib and JAK inhibitor I) and mutations in the BCL6 corepres-
sor (BCOR) alone or mutations in BCOR together with mutations in 
DNMT3A, RUNX1 or SRSF2. By plotting the average difference of each 
JAK inhibitor between mutant and wild-type groups for these four cate-
gories and performing a one-way ANOVA of the four groups, we found 
that mutations in both BCOR and RUNX1 correlated with increased 
sensitivity to all four JAK kinase inhibitors, whereas BCOR mutations 
alone or mutations in BCOR together with mutations in DNMT3A or 
SRSF2 showed no difference in sensitivity to the JAK kinase inhibitors— 
although BCOR mutations alone did show sensitivity to other drugs, 
such as the tankyrase/WNT inhibitor XAV-939 and the multi-kinase 
inhibitor crizotinib (Fig. 2c). Collectively, these data suggest that  
dysregulation of the JAK pathway may represent a vulnerability within 
certain settings of specific combinations of mutations and not in others.

We also performed an integrative analysis of drug sensitivity data 
with respect to patterns of gene expression, comparing the 20% of 
samples with the lowest AUC versus the 20% with the highest AUC 
and assessing the most differentially expressed genes between those 
sample sets. This analysis revealed significant (FDR < 0.05) expression 
signatures for 78 testable drugs in the panel (78 out of 119; 65.5%). 
As an example, the 20% most and least sensitive cases to ibrutinib 
could be clearly distinguished by an expression signature of 17 genes  

HNRNPA1

RP11-196G18.24

HSD17B13

CD86

HNMT

TLR2

ADAP2

FAM49A

ERMN

NAPSB

CHD5

RP11-333E13.2

MIR223

GYPC

KLHDC3

RAB43P1

B3GNT2

Disease type
ELN 2017
Cytogenetics
Mclust

AUC

FLT3-ITD
NPM1
DNMT3A

Expression Z score
–4 –2 0 2 4

Disease type
De novo
Relapse
Other
Transformed
Relapse and transformed

ELN 2017
Intermediate
Favourable or intermediate
Favourable
Adverse
Intermediate or adverse

Cytogenetics
None
RUNX1-RUNX1T1
GATA2-MECOM
Complex
CBFB-MYH11
PML-RARA
MLLT3-KMT2A

MCLUST
Cluster 1
Cluster 2

Fig. 3 | Integration of gene expression and drug sensitivity patterns. 
Differential gene expression signature distinguishing the 20% most 
ibrutinib-sensitive (n = 46) from the 20% most resistant (n = 44) 
specimens. Heat maps for all other drugs are available in our online data 

browser (http://vizome.org/additional_figures_BeatAML.html). For the 
number of samples used to correlate each drug with gene expression, see 
Supplementary Table 17. RP11-333E13.2 is a lincRNA; RP11-196G18.24 is 
a pseudogene.
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(Fig. 3 and Extended Data Fig. 9). Expression-signature heat maps for 
each drug can be found in our online data browser (http://vizome.org/
additional_figures_BeatAML.html).

Finally, to assess the joint contributions of both mutation and system- 
level co-expression patterns (based on de novo network inference) 
to predicting drug response, multivariate modelling was performed. 
This integrated analysis allows us to move beyond the significant 
associations of single mutations (such as FLT3-ITD and mutations 
in NPM1). We performed a weighted correlation network analysis of 
RNA-sequencing data that identified 14 sets of genes for which the gene 
expression patterns showed significant clustering across the cohort 
(clusters contained both increased and decreased gene expression 
events). We performed regularized regression modelling (LASSO)40 to 
understand how strongly any mutational event or any of these 14 gene 
expression clusters correlated with sensitivity or resistance to any of 
the drugs on the panel. We identified numerous, novel co-occurrences 
of mutations and expression clusters that were associated with drug  
sensitivity or resistance, with co-occurrences with ibrutinib shown  
as an example in Extended Data Fig. 9. For ibrutinib, these co- 
occurrences included a co-expression cluster of 345 genes (using a 
colour-labelling scheme and shown in ‘turquoise’) that correlated with 
drug sensitivity and frequently co-occurred with FLT3-ITD, which also 
correlated with drug sensitivity. There was significant overlap between 
this ‘turquoise’ gene expression cluster and the 17-gene signature in 
Fig. 3 (indicated by the ratio of observed overlap to expected over-
lap, or the representation factor, which was 13.6; P < 1.734 × 10−4). 
It is important to note that network analysis of this gene expression 
cluster highlighted enrichment of a number of immune-related path-
ways, which was not detected within the 17-gene signature (displayed 
at http://vizome.org/additional_figures_BeatAML.html). We also 
identified a 110-gene subnetwork (labelled in ‘magenta’ in Extended 
Data Fig. 9), which was associated with resistance to ibrutinib and was 
significantly associated with adverse ELN 2017 risk. To look more 
broadly at associations between mutations and gene expression clus-
ters, we summarized drugs at family level to assess the frequency with 
which mutations and gene expression clusters were selected in itera-
tive regression modelling (displayed at http://vizome.org/additional_ 
figures_BeatAML.html).

Discussion
In summary, we report a large functional genomic dataset of primary 
tumour biopsies. We present a cohort of specimens from patients 
with AML for which we have performed detailed clinical annotations, 
genomic and transcriptomic analyses and ex vivo drug sensitivity studies,  
and we provide analytical approaches for data integration. Each of these 
datasets alone has revealed new information about the biology and 
potential translational approaches in AML, and the integration of these 
datasets has revealed new markers and mechanisms of drug sensitivity 
and resistance that merit further study. These data have all been made 
publicly available through the NIH/NCI dbGaP and Genomic Data 
Commons (GDC) resources, and we have developed tools to facilitate 
user-interfacing with the dataset (http://www.vizome.org/). We hope 
and expect that this public data release will stimulate further use of 
the data, such that novel findings can be derived and turned into new 
clinical approaches for treatment of AML.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-018-0623-z.
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MEthodS
Patient samples. All patients gave informed consent to participate in this study, 
which had the approval and guidance of the Institutional Review Boards (IRB) 
at Oregon Health & Science University (OHSU), University of Utah, University 
of Texas Medical Center (UT Southwestern), Stanford University, University of 
Miami, University of Colorado, University of Florida, National Institutes of Health 
(NIH), Fox Chase Cancer Center and University of Kansas (KUMC). Samples were 
sent to the coordinating centre (OHSU; IRB 9570; 4422; NCT01728402), where 
they were coded and processed. Specific names of centres associated with each 
specimen were coded and centres providing less than five samples were aggregated 
together and given one centre identifier. Mononuclear cells were isolated by Ficoll 
gradient centrifugation from freshly obtained bone marrow aspirates or periph-
eral blood draws. Cell pellets were snap-frozen in liquid nitrogen for subsequent  
DNA isolation (Qiagen, DNeasy Blood & Tissue Kit), freshly pelleted cells  
were lysed immediately in guanidinium thiocyanate (GTC) lysate for subsequent 
RNA isolation (Qiagen, RNeasy Mini Kit), and freshly isolated mononuclear 
cells were plated into an ex vivo drug sensitivity assays within 24 h (described 
in ‘Ex vivo functional drug screens’). Skin punch biopsies were collected at the  
site of Jamshidi needle insertion for subsequent bone marrow biopsies and  
genomic DNA was isolated for use as matched normal controls for exome sequencing  
(Qiagen, DNeasy Blood & Tissue Kit). Clinical, prognostic, genetic, cytoge-
netic and pathologic laboratory values as well as treatment and outcome data  
were manually curated from the electronic medical records of the patient.  
Patients were assigned a specific diagnosis based on the prioritization of genetic 
and clinical factors as determined by WHO guidelines. To prevent re-identification,  
any patient over the age of 90 was placed into a >90 aggregated age bracket. 
Genetic characterization of the leukaemia samples included results of a clinical 
deep-sequencing panel of genes commonly mutated in haematologic malignancies 
(Sequenome and GeneTrails (OHSU); Foundation Medicine (UTSW); Genoptix; 
and Illumina).
Whole-exome sequencing and custom-capture validation sequencing. For 
whole-exome sequencing, Illumina Nextera RapidCapture Exome capture probes 
and protocol were used, which provided coverage of 37 Mb of genomic DNA-
coding regions. In brief, following initial quality control on a TapeStation (Agilent), 
50 ng of intact genomic DNA was fragmented and tagged (tagmentation) in a single 
step. Following clean-up, the tagmented DNA was amplified by 10 cycles of PCR, 
which added the indexed adaptors for clustering and sequencing. Libraries were 
hybridized to capture pools in 12 sample sets with two rounds of hybridization 
performed to increase specificity. Libraries recovered with streptavidin magnetic 
beads were amplified by 10 cycles of PCR, unincorporated reagents were removed 
with AMPure beads (Agencourt), and validated on the TapeStation. Quantification 
of capture pools was done using real-time PCR (Kapa). Libraries were denatured, 
flow cells set up using the cBot (Illumina), and run on a HiSeq 2500 using paired-
end 100-cycle protocols. For the AML tumour samples, 5 or 6 lanes were run per 
capture group. For the matched skin biopsy samples, 3 lanes (or equivalent) were 
run per capture group. The instrument and chemistry for all capture groups are 
provided in Supplementary Tables 12, 13.

For validation of sequencing results, an 11.9-Mb custom-capture library was 
developed that provided coverage of all variants previously reported in AML as 
well as all new variants detected from exome sequencing in this study (genes, var-
iants and capture regions for this custom library can be found in Supplementary 
Table 14). This capture library was then applied to sequence 96 specimens that had 
previously been subjected to whole-exome sequencing for validation of variant 
calls.
Whole-exome sequencing data processing. We developed customized analyt-
ical pipelines that combined published algorithms with novel filtering, curation 
and quality-control steps. Detailed depictions of analytical workflows can be 
found in Supplementary Table 6 and on our online browser (http://vizome.org/ 
additional_figures_BeatAML.html). Initial data processing and alignments were 
performed with commonly used analytical tools. For each flowcell and each sample, 
the FASTQ files were aggregated into single files for read 1 and 2. During this pro-
cess, these reads were trimmed by 3 on the 5′ end and 5 on the 3′ end. BWA MEM 
version 0.7.10-r78942 was used to align the read pairs for each sample-lane FASTQ 
file. As part of this process, the flowcell and lane information was kept as part of 
the read group of the resulting SAM file. The Genome Analysis Toolkit (version 
3.3) and the bundled Picard (version 1.120.1579) were used43 for alignment post- 
processing. The files contained within the Broad’s bundle 2.8 were used including 
their version of the build 37 human genome (these files were downloaded from 
ftp://ftp.broadinstitute.org/bundle/2.8/b37/). The following steps were performed 
per sample-lane SAM file generated for each CaptureGroup: (1) the SAM files were 
sorted and converted to BAM via SortSam; (2) MarkDuplicates was run, marking 
both lane level standard and optical duplicates; (3) the reads were realigned around 
insertions and deletions (indels) from the reads using RealignerTargetCreator/
IndelRealigner; (4) base quality score recalibration was performed.

The resulting BAM files were then aggregated by sample and an additional 
round of MarkDuplicates was performed out at the sample level. Quality-control 
reports were generated using the ReportingTools44 and qrqc45 Bioconductor R 
packages along with sequencing core and alignment output files. Each AML sam-
ple BAM was paired with its skin biopsy pair and an additional round of indel 
realignment was carried out to ensure consistency of genotypes between the two 
samples. If an AML sample did not have a pair, the indel realignment was instead 
done at the sample level.
Whole-exome sequencing variant detection. For genotyping, each AML–skin 
biopsy pair was realigned at the sample level and then genotyped for single-nucleotide  
variations using Mutect version 1.1.746 and Varscan2 version 2.4.147. Indels were 
produced using Varscan2. Each variant call format (VCF) file was annotated using 
the Variant Effect Predictor version 83 against GRCh3748. The resulting VCF files 
were filtered to include only those annotated to a gene and were converted to 
mutation annotation format (MAF) format using the vcf2maf version 1.6.6 tool49.

Mutect version 1.1.746 was run using default parameters, except that no limit 
was placed on the number or frequency of the alternative allele frequency in the 
normal condition to help to address normal contamination.

Varscan2 version 2.4.147 was run in somatic mode with the recommended fil-
tering scheme50, except as shown in Supplementary Table 23.

Indels and single-nucleotide variants (SNVs) were produced for the tumour-
only samples again using Mutect without a specified normal for consistency and 
VarScan2 in mpileup2indel or mpileup2snp mode, respectively. These variants 
were assigned to their most deleterious effect on Ensembl transcripts using 
Ensembl VEP version 83 on GRCh37. This assignment was done using the same 
VEP parameters as the vcf2maf (version 1.5.0) program.

The TCGA AML variants6 in MAF form were downloaded from the GDC 
archive site: https://portal.gdc.cancer.gov/legacy-archive/files/c410d927-d49c-
4d4f-8356-601bee563ebe. The MAF files were converted to VCF files using the 
vcf2maf suite51. The resulting VCF files were lifted over from NCBI36 to GRCh37 
of the human genome using CrossMap52. Only those variants that successfully 
lifted over were kept.

Variants from supplementary table 2 from a previously published study14 were 
extracted and further processed, removing variants that were ambiguous in terms 
of external sources and could not be found in their whole-exome sequencing 
variants. The unique set of Beat AML variants was annotated relative to RefSeq 
transcripts using Ensembl VEP similar to above and all consequences were kept. 
This set of variants and consequences was searched against the set of processed 
variants from the previously published study14.

Using the runs from MuTect and VarScan2, these data were next filtered to 
keep only the protein-influencing SNVs and indels from Mutect and VarScan2 
and filtered, requiring that the variants had at least 5 reads and either not be seen 
in the Exome Aggregation Consortium (ExAC)53 dataset or be seen at a frequency 
<0.01. These data present several additional challenges. First, somatic calls can-
not be obtained directly from the tumour-only samples. Second, there is always 
a possibility of tumour contamination of the skin samples for those samples that 
were paired. To address these issues and maximize comparability, we used an iter-
ative approach. The following was done separately for the two genotypers. (1) An 
initial set of higher-confidence somatic mutations were retrieved from the paired 
tumour–normal samples requiring tumour variant allele frequency (VAF) ≥ 8% 
and normal VAF ≤ 5%, in addition to the significance tests already performed by 
the programs. (2) A list of all candidate mutations was collated requiring that a 
mutation was either seen in the high-confidence somatic set, the set of variants 
from the previously published study14 or from the lifted-over set of variants from 
the TCGA AML paper6. (3) Mutations from the overall set were kept if: (a) the 
overall number of calls in the paired samples was not more than twice the number 
of high-confidence somatic calls; (b) the tumour-only frequency for the calls was 
less than 50% greater than the number of calls in the paired samples; (c) the muta-
tion was seen in list of the previous study14 or TCGA dataset6. (4) High-confidence 
somatic mutations were kept regardless.

The data from the two genotypers were combined along with FLT3-ITD calls 
from Pindel54. Comparing our variant lists from whole-exome sequencing amd 
custom-capture validation sequencing, we noticed—similar to others55—that low 
allele frequency C-to-A variants (<15%) tended to have poor concordance (7.7%; 
data not shown) between the initial run and the technical validation run. These 
variants were removed in these data, along with a curated ‘blacklist’ (Supplementary 
Table 15) of known problematic variants and/or genes, including mitochondrial 
DNA variants. In addition, all variants that were seen in a cumulative list of 
normal samples from Beat AML at a frequency greater than 1% were removed. 
Cumulatively, of this set, 94% of covered SNVs were validated with 82% of indel 
calls also being confirmed with validation sequencing. Manual review was then 
carried out in the following steps. (1) The addition back of all flagged rows from 
the previous study14. (2) The review of all TCGA-flagged rows for VAF pattern that 
matched or did not match with known drivers in the same specimen. Some TCGA 
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variants were added back based on convincing VAF pattern and known pathogenic 
role, other TCGA variants were kept excluded based on a VAF pattern that was 
unlike known drivers in the same specimens. (3) Other variants were added back 
based on other specimens that had the same variant that were still on the include 
list, and if the VAF pattern looked convincing for inclusion. (4) All genes from the 
previous study14 with only frameshift and/or nonsense variants were manually 
reviewed and missense mutations were manually removed. (5) Genes and/or var-
iants that were on both the include and exclude lists were manually reviewed and 
they were removed if they were C-to-A with over 15% VAF, they did not validate 
and/or the VAF pattern was unlike known drivers in same specimen. (6) Further 
review of all genes in the summary sheet with cohort frequency of 8 or more (1% of 
more). Any that were not familiar from knowledge of AML literature were manually 
reviewed for VAF patterns that did or did not match known drivers within the same 
specimens. Those that did not match were manually removed.

After this manual review, additional curated mutations from the 
UnifiedGenotyper run were added back in along with a curated set of variants from 
tumour-only patients for genes from the previous study14. The tumour-only AML 
samples used in another study (H.Z. et al., manuscript submitted) were removed 
and used for that study.
Detection of internal FLT3-ITD and NPM1 mutations. A subset of samples was 
tested for FLT3-ITD and NPM1 mutation status using an internally run PCR assay 
and capillary electrophoresis. Genomic DNA (gDNA) was extracted from fresh 
blood or bone marrow aspirates of patients with AML and was used to detect 
the presence or absence of FLT3-ITD and NPM1 4-bp insertion mutations56,57. 
Primers for FLT3 spanned approximately 330 bp to include the common inter-
nal duplication site56. Primers for NPM1 spanned approximately 170 bp to cover 
the clustered multiple insertional or indel sites57,58. Primers were HPLC-purified 
by the manufacturer. The multiplex PCR reaction solution59 consisted of 100 ng 
gDNA, 10 pmol of the respective forward and reverse primers for FLT3 and 
NPM1, 25 mmol l−1 MgCl2, 2.5 mmol l−1 dNTPs, 5 µl 10× PCR buffer, 0.2 µl 
AccuTaq DNA polymerase and water in a total volume of 50 µl. The PCR con-
ditions were: initial denaturing for 5 min at 94 °C, followed by 30 cycles at 94 °C 
for 30 s, 56 °C for 45 s and 72 °C for 30 s with a final cycle of 10 min at 72 °C. The 
PCR products were diluted 1:10 and analysed by capillary electrophoresis on a 
QIAxcel high-resolution DNA cartridge according to the manufacturer’s protocol. 
Forward primer FLT3: 5′-AGCAATTTAGGTATGAAAGCCAGCTA-3′; reverse 
primer FLT3: 5′-CTTTCAGCATTTTGACGGCAACC-3′. Forward primer NPM1: 
5′-GTTTCTTTTTTTTTTTTTCCAGGCTATTCAAG-3′; reverse primer NPM1: 
5′-CACGGTAGGGAAAGTTCTCACTCTGC-3′.
Derivation of FLT3-ITD and NPM1 consensus calls. Consensus FLT3-ITD and 
NPM1 mutation calls found in the clinical summary table (Supplementary Table 5) 
were determined by comparing the internal capillary PCR test (internal; according 
to the methods described in ‘Detection of internal FLT3-ITD and NPM1 muta-
tions’), the Clinical Laboratory Improvement Amendments/College of American 
Pathology (CLIA/CAP) laboratory run test (Sequenome, GeneTrails, Foundation 
Medicine, Genoptix, Illumina). The internal test was used for the sample consen-
sus call when available, as it was performed on the exact sample that was used for 
further ex vivo drug sensitivity assays. Where discordance existed between the 
internal test and the CLIA laboratory test results, the sample was flagged for manual 
review. The trace file for the internal test was visually inspected and if discordance 
with the CLIA/CAP test results persisted, the whole-exome sequencing data were 
then used to help to determine the consensus call.
Derivation of CCAAT enhancer binding protein α (CEBPA) biallelic consen-
sus calls. N-terminal and C-terminal mutations have been described to occur on 
opposing alleles and patients with CEBPA biallelic mutations have been shown 
to fall into a favourable risk category60. Patients were scored positive for biallelic 
CEBPA mutation if described in the clinical notes as biallelic or double-positive.  
Patients were also scored as CEBPA biallelic if both N-terminal and C-terminal 
mutations were identified in the whole-exome sequencing data.
RNA sequencing and data processing. All samples were sequenced using the 
Agilent SureSelect Strand-Specific RNA Library Preparation Kit on the Bravo robot 
(Agilent). In brief, poly(A)+ RNA was chemically fragmented. Double-stranded 
cDNAs were synthesized using random hexamer priming with 3′ ends of the 
cDNA adenylated, after which indexed adaptors were ligated. Library amplifi-
cation was performed using three-primer PCR using a uracil DNA glycosylase 
addition for strandedness. Libraries were validated with the Bioanalyzer (Agilent) 
and combined to run 4 samples per lane, with a targeted yield of 200 million clus-
ters. Combined libraries were denatured, clustered with the cBot (Illumina) and 
sequenced on the HiSeq 2500 using a 100-cycle paired-end protocol. In addition 
to the AML samples, there was also a sample of purified CD34 molecule (CD34)+ 
cells from healthy control bone marrow, which was included in each sample group 
(for a total of 12 times sequencing this control RNA). This control served as both 
a healthy control and a quality check on inter-group batch effects. In addition,  
21 individual healthy bone marrow samples were also included, two of which were 

CD34-selected (17-00053 and 17-00056) with the other 19 being whole mono-
nuclear bone marrow cells from healthy donors.

Workflows for processing and analysis of RNA-sequencing data to generate gene 
counts and gene fusions for each sample are shown on our online browser (http://
vizome.org/additional_figures_BeatAML.html) with processed gene expression 
values for each specimen listed in Supplementary Tables 8, 9. For each flowcell and 
each sample, the FASTQ files were aggregated into single files for read 1 and read 2 
(if not already done by the sequencing core). During this process, these reads were 
trimmed by 3 on the 5′ end and 5 on the 3′ end. Alignment of reads was performed 
using the subjunc aligner (version 1.5.0-p2)61. BAM files obtained from subjunc 
were used as inputs into featureCounts (version 1.5.0-p2)62 and gene-level read 
counts were produced. For a reference genome, the GRCh37 build provided by 
the Broad as part of the GATK bundle was used. Gene assignments were based on 
the Ensembl build 75 gene models on GRCh37. The following parameters were 
used for the software:

subjunc -i /path/to/reference/ -u -r fastq1 -R fastq2 -o outputBAMFilename -I 
5 -T 7 -d 50 -D 600 -S fr and featureCounts -a Homo_sapiens.GRCh37.75.gtf -o 
output -F GTF -t exon -g gene_id -s 2 -C -T 10 -p -P -d 50 -D 600 -B BAM_files.

The data were collated from featureCounts matrices and all genes with no 
counts across the samples were excluded. Genes with duplicate gene symbols and 
those for wich the counts were <10 for 90% or more of the samples were addition-
ally removed before normalization similar to the approach suggested for weighted 
gene correlation network analysis (WGCNA)63. Samples for which the median 
expression was less than 2 standard deviations below the average were removed 
from the dataset (n = 10). Normalization was performed using the conditional 
quantile normalization procedure64, which produced GC-content-corrected log2 
reads per kilobase per million mapped reads (RPKM) values. This procedure 
produces both offsets to be used in conjunction with edgeR as well as a matrix of 
log2-normalized RPKM values for clustering.

In addition, the subjunc BAM files were processed using the RNA-sequencing 
genotyping protocol (as of GATK version 3.3), which was similar to the whole- 
exome sequencing protocol described in the ‘Whole-exome sequencing data pro-
cessing’ section, including the following steps for each sample: (1) MarkDuplicates; 
(2) SplitNCigarReads; (3) RealignerTargetCreator/IndelRealigner; (4) base quality 
score recalibration. The resulting BAM files were used to produce RNA geno-
types using the UnifiedGenotyper for the purposes of quality control and ethnicity  
estimation.

Gene fusion data were additionally generated using the TopHat-Fusion (version 
2.0.14) program using default parameters65.
Coexpression network formation. We formed coexpression modules using the 
WGCNA procedure on the RNA-sequencing data from the ‘RNA sequencing and 
data processing’ section. All RNA-sequencing samples were used to form the set 
of modules. Owing to the heterogeneity of the clinical expression data, we gener-
ated ‘signed hybrid’ networks using the ‘bicor’ correlation66, setting the maximum 
proportion of outliers to 0.1. We ran the procedure multiple times, varying several 
parameters to choose the most relevant set for further analysis. The WGCNA 
procedure was run on datasets formed from the top 2,000 and 5,000 most variable 
genes. For each dataset, we set the ‘power’ variable to either 2 or 3. For each of these 
runs, we varied the module detection parameters of dynamicTreeCut63, namely 
the deepSplit parameter was set to 0 or 2 and the pamStage parameter was set to 
TRUE or FALSE. For each of these sets of modules we computed a series of module 
quality statistics67, mean correlation, mean adjacency, mean maximum adjacency 
ratio (MAR), mean correlation with the module eigengene (KME), proportion of 
variability explained and the mean cluster coefficient. Significance of modules was 
determined by computing a z score of each of these values relative to the mean and 
standard deviation of those from 100 random assignment of modules. We chose 
the set of modules to use in our analyses as those that were most correlated with 
the ‘specimentSpecificDx’ using module quality as a tie-breaker. The analysis set of 
modules was chosen to be the version using the 5,000 most variable genes, power 
set to 2 and modules formed using deepSplit = 2 and pamStage = F. Of this set 
of modules, only the grey module did not have a summary z statistic (median 
across the four density measures) of at least 2. In addition, after correcting the data 
using the estimated principal components68, the module structure did not change 
appreciably (data not shown).
Quality control. The UnifiedGenotyper runs for both the whole-exome sequenc-
ing and RNA-sequencing data were combined into a single VCF file using the 
GATK CombineVCFs functionality. This combined VCF file was converted to a 
GDS file using SNPRelate (version 1.12.2)69. Note, the version is the most recent 
version as several versions were used across the entire project. The overall similarity 
of the genotypes of each pair of samples was computed, termed identity by state 
(IBS) and hierarchical clustering was performed using one minus this similarity. 
From this clustering and visualization we had devised hard cut-offs for further 
inspection based on the types of data being compared. For instance, samples  
not meeting the specified IBS thresholds (DNA–DNA = 0.9; RNA–RNA = 0.83; 
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DNA–RNA = 0.89) were subject to manual review. On the basis of the dendro-
gram structure as well as the clinical/laboratory information, samples were either 
excluded, assigned to a different patient ID or in rare cases assigned to a different 
sample. It was observed that bone marrow transplants between sample collections 
produced a noticeable but milder effect in these dendrograms and such samples 
were flagged for removal from the RNA-sequencing analysis and for treatment 
as tumour-only samples in the whole-exome sequencing analysis as described in 
‘Whole-exome sequencing variant detection’.
Fusion annotation for analysis. Fusions calls were determined from a consensus 
of three datatypes, a specific diagnosis categorization at the time of sample acqui-
sition, current set of clinical karyotypes and fusions detected in RNA-sequencing 
data by TopHat-Fusion. All sources were limited to the same set of known fusions: 
RUNX1-RUNX1T1, CBFB-MYH11, MLLT3-KMT2A, DEK-NUP214, GATA2-
MECOM and PML-RARA. It was determined that the RNA-sequencing calls did 
not provide additional resolution in detecting these known fusions and was not 
performed on all the samples, so the consensus was limited to the clinical karyotype 
calls as well as the specific diagnosis categorization (which was determined based 
on karyotype and other cytogenetic clinical tests). Overall, the calls were based on 
the karyotype data except in 10 cases; for 3 cases the karyotype and diagnosis was 
sufficiently complex to warrant a separate ‘complex’ categorization. The remaining  
7 of these cases were set to the specific diagnosis classification. It should be noted 
that there was additional support from the RNA-sequencing data for several of 
these cases.
Ethnicity. The combined RNA and whole-exome sequencing VCF files from the 
‘Quality control’ step were merged with a set of Hapmap genotypes70 lifted over to 
build 37. The SNPRelate package was used to convert the VCF to GDS, perform 
linkage disequilibrium (LD) pruning using an LD threshold of 0.2, MAF cut-off of 
0.05 and allowing a missing rate of 0.3 and calculation of the principal components. 
Previously published methodology71 was used to assign admixture proportions 
relative to the HapMap samples using the principal components. Each sample was 
assigned to an ethnicity group based on the group with the maximum admixture 
proportion. If the maximum was 50% or less, we labelled it ‘Admixed’. As we had 
observed previously that the clustering of ethnicities for RNA-sequencing samples 
are more diffuse than exome sequencing, we assigned the final inferred ethnicity to 
each patient based on the distinct whole-exome sequencing calls if available, defer-
ring to RNA sequencing only if not available. If multiple exome sequencing samples 
were present with discrepant calls, the data of the patient were manually reviewed. 
The only patient for which this occurred was patient 4043, a self-identified  
Hispanic who had two RNA samples and an exome sequencing sample inferred as 
‘White’ and one exome sample inferred to be ‘HispNative’. Only the ‘White’ call for 
the exome sequencing had an admixture proportion over 0.5. The patient was kept 
consistent with the self-identification and labelled as ‘HispNative’.
Sex. For DNA, coverage was first computed over the Y chromosome and the counts 
for each sample were added up and log10-transformed (after adding 1 to all the 
counts). k-means clustering was used to assign samples to two clusters with the 
cluster with the lower mean labelled as the ‘Female’ cluster.

For RNA sequencing, counts were converted to counts per million after  
applying the Trimmed Mean of M scaling normalization72. A set of 28 genes  
were chosen to successfully discriminate the genders using DE analysis over 
multiple studies (data not shown) and were used in conjunction with k-means 
clustering to form two clusters. The ‘Female’ cluster was labelled based on high 
XIST expression.
ELN 2017 classification. This procedure is based on the categorization in table 5 
of the 2017 ELN update paper5. Karyotypes in the clinical file were first cleaned 
and parsed into clones or subclones and distinct abnormalities using standard 
conventions73. The current representation was corrected for nomenclature type 
(for example, ‘idem’ versus ‘sl’) in a basic manner. For instance, ambiguous events, 
such as chromosomal loss (for example, −15), were not corrected for whether 
the preceding clone had a counteracting gain. Also, additional ‘+’ or ‘−’ symbols 
in conjunction with valid karyotype operators in a separate clone (for example, 
+del(12)(q?15) or −del(12)(q?15))) were treated separately with gains (+) being 
kept in the unique count of events and losses (−) being removed.

Abnormalities were first checked for the following categories: (1) RUNX1-
RUNX1T1; (2) CBFB-MYH11; (3) MLLT3-KMT2A; (4) DEK-NUP214;  
(5) KMT2A-*; (6) BCR-ABL1; (7) GATA2-MECOM; (8) −5/del(5q); (9) −7;  
(10) −17. Categories 1–8 were further considered to be WHO recurrent fusions.

The number of unique abnormalities (across clones) was then computed. 
Whether or not a karyotype was considered to be polyploid was also recorded  
(at least 60 chromosomes or ‘(≥ 3)n’ or label). NPM1, FLT3-ITD and biallelic 
CEBPA were derived from consensus calls. FLT3-ITD allelic ratios were deter-
mined only for the samples with an internal assay. The MAF values of the inter-
nal assay were converted to a ratio using the formula MAF/(1 − MAF). RUNX1, 
ASXL1 and TP53 were derived from the clinical genotypes. Abnormal 17 calls were 
manually curated from the karyotype data and clinical genotype calls.

The determination of ELN 2017 categories proceeds by assigning true/false/not 
available values to one or more of the five columns (three ELN and two ambiguous) 
in the following manner. (1) ‘isFavourable’ is considered true if a sample has at least 
one of the following: (a) RUNX1-RUNX1T1; (b) CBFB-MYH11; (c) positive NPM1 
and negative FLT3-ITD; (d) positive NPM1 and positive FLT3-ITD with allelic 
ratio <0.5; (e) biallelic CEBPA. (2) ‘isFavourableOrIntermediate’ when NPM1 is 
positive and FLT3-ITD is positive but the allelic ratio is not available. (3) ‘isAdverse’ 
is considered true if a sample has at least one of the following: (a) DEK-NUP214; (b) 
KMT2A-*; (c) BCR-ABL1; (d) GATA2-MECOM; (e) −5/del(5q); (f) −7; (g) −17; 
(h) abn_17; (i) three or more abnormalities and no WHO recurrent fusions; (j) one 
monosomy (autosomal) and at least one additional abnormality except for CBFB-
MYH11; (k) positive RUNX1 or ASXL1 and not considered to be ‘isFavourable’ or 
‘isFavourableOrIntermediate’; (l) positive TP53; (4) ‘isIntermediate’ is considered 
true if a sample has at least one of the following: (a) MLLT3-KMT2A; (b) NPM1 is 
positive and FLT3-ITD is positive with allelic ratio ≥0.5; (c) NPM1 is negative and 
FLT3-ITD is negative or has a low allelic ratio (<0.5); (d) at least one abnormality 
and is not considered ‘isFavourable’ or ‘isAdverse’; (5) ‘isIntermediateOrAdverse’ 
when NPM1 is negative and FLT3-ITD is positive without an allelic ratio. Calls 
were annotated as ‘not available’ in the absence of FLT3-ITD or NPM1 calls.

Samples for which the specific diagnosis at inclusion indicated ‘acute promyelo-
cytic leukaemia with t(15;17)(q22;q12)’ were automatically set to ‘Favourable’. Any 
overlaps in the categories were resolved based on manual expert review.
Ex vivo functional drug screens. Ex vivo functional drug screens were performed 
on freshly isolated mononuclear cells from AML samples. In brief, 10,000 cells per 
well were arrayed into three, 384-well plates containing 122 small-molecule inhib-
itors. This panel contained graded concentrations of drugs with activity against 
two-thirds of the tyrosine kinome as well as other non-tyrosine kinase pathways, 
including mitogen-activated protein kinases (MAPKs), the pathway involving 
phosphatidylinositol-4,5-bisphosphate 3-kinase, AKT serine/threonine kinase 1  
and mechanistic target of rapamycin kinase (PIK3C–AKT–MTOR); protein kinase 
AMP-activated (AMPK, also known as PRKAA1), ATM serine/threonine kinase 
(ATM), Aurora kinases, calcium/calmodulin-dependent protein kinases (CAMKs), 
cyclin-dependent kinases (CDKs), serine/threonine protein kinase 3 (GSK3), 
IκB kinase (IκK), cAMP-dependent protein kinase (PKA), protein kinase C  
(PKC), polo-like kinase 1 (PLK1) and RAF proto-oncogene serine/threonine 
kinase (RAF). In addition, the library contained small-molecule inhibitors with 
activity against the BCL2 family, bromodomain containing 4 (BRD4), Hedgehog, 
heat shock protein 90 (HSP90), NOTCH/γ-secretase, proteasome, survivin, signal 
transducer and activator of transcription 3 (STAT3), histone deacetylase (HDAC), 
and WNT/β-catenin. Drug plates were created using inhibitors purchased from 
LC Laboratories and Selleck Chemicals and master stocks were reconstituted in 
dimethyl sulfoxide (DMSO) and stored at −80 °C. Master plates were created by 
distributing a single agent per well in a seven-point concentration series, created 
from threefold dilutions of the most concentrated stock resulting in a range of 
10 µM to 0.0137 µM for each drug (except dasatinib, ponatinib, sunitinib and 
YM-155, which were plated at a concentration range of 1 µM to 0.00137 µM). 
DMSO-control wells and positive-control wells containing a drug combination of 
flavopiridol, staurosporine and velcade were placed on each plate, with the final 
concentration of DMSO ≤0.1% in all wells. Daughter plates were created using 
a V&P Scientific 384-well pin tool head operated by the Caliper Sciclone ALH 
3000 and equipped with 0.457-mm diameter, 30-nl, slotted stainless-steel pins 
(FP1NS30). Daughter and destination plates were sealed with pealable thermal 
seals using a PlateLoc thermal sealer. Destination plates were stored at −20 °C for 
no more than three months and thawed immediately before use. Primary mononu-
clear cells were plated across single-agent inhibitor panels within 24 h of collection. 
Cells were seeded into 384-well assay plates at 10,000 cells per well in Roswell 
Park Memorial Institute (RPMI) 1640 medium supplemented with fetal bovine 
serum (FBS) (10%), l -glutamine, penicillin–streptomycin, and β-mercaptoethanol 
(10–4 M). After three days of culture at 37 °C in 5% CO2, MTS reagent (CellTiter96 
AQueous One; Promega) was added, the optical density was measured at 490 nm, 
and raw absorbance values were adjusted to a reference blank value and then used 
to determine cell viability (normalized to untreated control wells).
Ex vivo functional drug screen data processing. A workflow in which the data 
normalization, curve fit parameters and quality assurance/quality control steps are 
summarized can be found on our online browser (http://vizome.org/additional_
figures_BeatAML.html) with processed drug response data for each specimen 
listed in Supplementary Table 10. A given sample was run on one or more panels 
and within each panel, the majority of drugs were run without within-panel rep-
licates. Two steps were performed to harmonize these data before model fitting.

First, a ‘curve-free’ AUC (integration based on fine linear interpolation between 
the seven data points themselves) was calculated for those runs with within-panel 
replicates after applying a ceiling of 100 and a floor of 0 for the normalized viability. 
The maximum change in AUC among the replicates was noted and those runs with 
differences >100 were removed.
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Second, the remaining within-plate replicates had their normalized viability 
averaged subject to a ceiling of 100 and floor of 0. An additional set of ‘curve-
free’ AUCs was computed for sample–inhibitor pairs run on multiple panels. The 
maximum change in AUC among the across-panel replicates was noted and those 
runs with differences >75 were removed.

At this point, the within- and across-plate replicates for the normalized viability 
were averaged together and a ceiling of 100 was applied. From the steps above, 
the floor was already at 0. On the basis of the methodology used in our prior 
drug-combination study74, a probit regression was fit to all possible run groups 
using the model: (normalized viability / 100) ~ 1 + log10(concentration). For all 
groups there were n = 7 dose–response measurements.

The summary analyses of curve fit were inspected and cut-offs were devised 
removing all runs with an Akaike information criteria (AIC) > 12 and deviance 
>2. For inhibitors that were run using multiple concentration ranges, only the 
most-recent concentration range was kept. Finally, these data were compared to the 
AUC values from third-order polynomial fits. Those runs that were discrepant in 
terms of sensitive or resistant calls were manually reviewed as subject to removal.
Ex vivo functional drug screen analysis. For all drug analyses that required a call 
of sensitivity or resistance (for example, the gene expression signatures), sensitivity 
or resistance was determined by the lowest and highest 20% of the AUC values 
for each drug.
Correlations between drugs in families. For each inhibitor in the study, available 
data on targets of the inhibitors were pulled from a variety of online resources and 
published studies, many of which were aggregated in the Cancer-Targetome75,76. 
Activity of each inhibitor for targets was then distilled into a five-tier system to 
afford comparison across drugs with differing degrees of potency and/or for which 
differing assays were used to measure drug and/or target activity. Well-represented 
genes, gene families and pathways were then filtered for drugs that have activity 
in the top 3 tiers for one or more member of the gene family or pathway. These 
lists were then manually curated to generate the final list of high-confidence drug 
target families (shown in Supplementary Table 11). For each inhibitor assigned to 
at least one drug target family, the Pearson’s correlation was computed against all 
other drugs assigned to at least one drug target family for the AUC values of all 
available samples shared between the two drugs.
Correlations between drugs and samples. Drugs were first filtered to require greater 
than two hundred samples per drug. Additional samples were removed accordingly 
to allow correlations to be computed between all present samples using available 
AUC data and between all drugs.
Summary drug response scores. For each patient sample, a binary score (1/0) was 
used for each drug based on the same threshold as for the gene signatures (for 
example, sensitivity or resistance was determined by the lowest and highest 20% 
of the AUC values for each drug). Individual scores were computed for resistance 
and sensitivity separately and presented as the proportion over all screened drugs 
for each patient sample.
Expression analysis and integration with ex vivo functional drug screen. For all 
the below analyses the earliest sample was chosen for each patient.
Expression heat map. The top 2,000 most variable genes were extracted. The 
expression values were centred and scaled across patients and complete-linkage 
hierarchical clustering was performed using the ComplexHeat map R package77.
Sensitive or resistant differential expression. For each drug, it was required that 
at least three sensitive and three resistant samples using the 20%/20% criteria 
outlined in the ‘Ex vivo functional drug screen analysis’ section. Patient samples 
were limited to those labelled as sensitive or resistant. Next, genes were limited 
based on their expression, for which at least half the patients used for analysis 
had to have greater than one count per million (an approach suggested in the 
limma users manual)78. The normalized expression as in the data described in 
the ‘RNA sequencing and data processing’ section with the chosen samples and 
genes was used for differential expression analysis. Because the data had not been 
batch-corrected at this point, surrogate variable analysis (SVA)79 was used to infer 
covariates for correcting out technical confounders. Next, the linear model fitting 
for each gene was performed using the limma-trend approach80, testing whether 
the average expression was different between resistant and sensitive correcting for 
the SVA covariates. Genes with Benjamini–Hochberg38 FDR values of less than 
0.05 were kept for the cluster analysis. The expression matrix was corrected with 
respect to the estimated surrogate variables for consistency with the differential 
expression procedure using fSVA81 and MCLUST82 was used to determine optimal 
number of clusters and parameterization. The results were then visualized using 
a CLUSPLOT83, which displays the clustering results with respect to the first two 
principal components of the gene expression for the kept genes.
Mutation analysis and integration with ex vivo functional drug screen. For all 
the below analyses in which groups of samples were compared, the earliest sample 
was chosen for each patient.
TCGA comparison. The lifted-over TCGA variants from the ‘Whole-exome 
sequencing variant detection’ section were annotated using the VEP from Ensembl 

build 83, filtered for protein-altering and splice site variants and our ‘blacklist’ was 
applied to ensure the variant sets were comparable.
Co-occurrence and mutual exclusivity. Only mutations seen in at least 10 patients 
were kept. The DISCOVER41 method was used to determine significant mutual 
exclusivity and co-occurrence. A plot of the co-occurrences was generated using 
corrplot84 with the odds ratio of the pairwise co-occurrence used to colour and 
scale the circle sizes.
Association between mutations and drugs. For each mutated gene in the exome 
sequencing samples and each recurrent fusion (counting FLT3-ITD as a distinct 
entity from other FLT3 mutants), we determined all available (at least 5 patients) 
pairwise and three-way co-occurrence sets. For each drug and each valid set of 
genes (from one to three genes), we fitted a linear model with AUC as the response 
and examined the linear contrast (that is, two-sided Student’s t-test) comparing the 
AUC of the gene(s) to the appropriate negative. For example the average AUC of 
the FLT3, DNMT3A and NPM1 mutants would be compared to average AUC of 
the samples negative for all three genes. FDR was computed using the Benjamini–
Hochberg method over all the drugs.

For the ibrutinib and entospletinib comparisons, the presence and absence of 
the three genes or mutations: NPM1, FLT3-ITD and DNMT3A was collapsed into 
levels of a single factor. The corresponding single-factor ANOVA was carried out 
with the ‘triple-negative’ category set as the reference. Significance of the P values 
of each coefficient was compared to the Bonferroni-corrected 0.05 level.

For the JAK-family analysis, the AUC values were pooled for the four JAK 
inhibitors (CYT387, tofacitinib (CP-690550), JAK inhibitor I, ruxolitinib 
(INCB018424)) for each gene mutation set (BCOR, BCOR and DNMT3A, BCOR 
and RUNX1, BCOR and SRSF2). The contrast of the difference between BCOR and 
RUNX1 samples and the average of the other three mutation groups was tested.
Integration of both mutation and RNA sequencing with ex vivo functional drug 
screen. Mutations (0/1 score) and the module Eigengenes from the WGCNA analysis 
were used separately and combined together in regression models with coefficients 
selected using the LASSO approach40 as implemented in glmnet85. For each data type 
and the combination, only drugs with at least 200 patients samples were tested. The 
three datasets were initially randomly separated into training (75%) and test (25%) 
sets. Similar to a previous approach86, a bootstrap aggregation approach was used 
in which the 1,000 bootstraps of the training dataset were generated and for each 
one, the LASSO was trained using tenfold cross-validation. Predictions were formed 
for the test dataset over these bootstrap models and the predicted AUC was aver-
aged. R2 values were computed for these aggregated predictions relative to the test 
AUC values. As performance was seen to be dependent on the initial split between 
test and training, we repeated the entire process 100 times, recording the mean and 
standard deviation of the R2 value as well as the count non-zero coefficients
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
All raw and processed sequencing data, along with relevant clinical annotations, 
have been submitted to dbGaP and Genomic Data Commons. The dbGaP study ID 
is 30641 and accession ID is phs001657.v1.p1. The raw data for clinical annotations, 
variant calls, gene expression counts and drug sensitivity that underlie Figs. 1–3 
and Extended Data Figs. 1–9 are provided as Source Data. In addition, all data can 
be accessed and queried through our online, interactive user interface, Vizome, at 
http://www.vizome.org/.
 
 42. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–

Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
 43. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for 

analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 
(2010).

 44. Huntley, M. A. et al. ReportingTools: an automated result processing and 
presentation toolkit for high-throughput genomic analyses. Bioinformatics 29, 
3220–3221 (2013).

 45. Buffalo, V. qrqc: Quick Read Quality Control. R package version 1.22.0 http://
github.com/vsbuffalo/qrqc (2012).

 46. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and 
heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

 47. Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration 
discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

 48. McLaren, W. et al. Deriving the consequences of genomic variants with the 
Ensembl API and SNP Effect Predictor. Bioinformatics 26, 2069–2070 (2010).

 49. Memorial Sloan Kettering. vcf2maf. version 1.6.6 https://github.com/mskcc/
vcf2maf/ (2016).

 50. Koboldt, D. Release note for Varscan version 2.4.1. https://github.com/
dkoboldt/varscan/blob/master/VarScan.v2.4.1.description.txt (2015).

 51. Memorial Sloan Kettering. maf2vcf. version 1.6.6 https://github.com/mskcc/
vcf2maf/ (2016).

 52. Zhao, H. et al. CrossMap: a versatile tool for coordinate conversion between 
genome assemblies. Bioinformatics 30, 1006–1007 (2014).

© 2018 Springer Nature Limited. All rights reserved.



ARTICLERESEARCH

 53. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. 
Nature 536, 285–291 (2016).

 54. Ye, K., Schulz, M. H., Long, Q., Apweiler, R. & Ning, Z. Pindel: a pattern growth 
approach to detect break points of large deletions and medium sized insertions 
from paired-end short reads. Bioinformatics 25, 2865–2871 (2009).

 55. Costello, M. et al. Discovery and characterization of artifactual mutations in 
deep coverage targeted capture sequencing data due to oxidative DNA damage 
during sample preparation. Nucleic Acids Res. 41, e67 (2013).

 56. Kottaridis, P. D. et al. The presence of a FLT3 internal tandem duplication in 
patients with acute myeloid leukemia (AML) adds important prognostic 
information to cytogenetic risk group and response to the first cycle of 
chemotherapy: analysis of 854 patients from the United Kingdom Medical 
Research Council AML 10 and 12 trials. Blood 98, 1752–1759 (2001).

 57. Döhner, K. et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in 
younger adults with acute myeloid leukemia and normal cytogenetics: 
interaction with other gene mutations. Blood 106, 3740–3746 (2005).

 58. Falini, B., Nicoletti, I., Martelli, M. F. & Mecucci, C. Acute myeloid leukemia 
carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and 
clinical features. Blood 109, 874–885 (2007).

 59. Huang, Q. et al. A rapid, one step assay for simultaneous detection of FLT3/ITD 
and NPM1 mutations in AML with normal cytogenetics. Br. J. Haematol. 142, 
489–492 (2008).

 60. Wouters, B. J. et al. Double CEBPA mutations, but not single CEBPA mutations, 
define a subgroup of acute myeloid leukemia with a distinctive gene expression 
profile that is uniquely associated with a favorable outcome. Blood 113, 
3088–3091 (2009).

 61. Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: fast, accurate and scalable 
read mapping by seed-and-vote. Nucleic Acids Res. 41, e108 (2013).

 62. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose 
program for assigning sequence reads to genomic features. Bioinformatics 30, 
923–930 (2014).

 63. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation 
network analysis. BMC Bioinformatics 9, 559 (2008).

 64. Hansen, K. D., Irizarry, R. A. & Wu, Z. Removing technical variability in RNA-seq 
data using conditional quantile normalization. Biostatistics 13, 204–216 (2012).

 65. Kim, D. & Salzberg, S. L. TopHat-Fusion: an algorithm for discovery of novel 
fusion transcripts. Genome Biol. 12, R72 (2011).

 66. Langfelder, P. & Horvath, S. Fast R functions for robust correlations and 
hierarchical clustering. J. Stat. Softw. 46, 1–17 (2012).

 67. Langfelder, P., Luo, R., Oldham, M. C. & Horvath, S. Is my network module 
preserved and reproducible? PLOS Comput. Biol. 7, e1001057 (2011).

 68. Parsana, P. et al. Addressing confounding artifacts in reconstruction of gene 
co-expression networks. Preprint at https://www.biorxiv.org/content/
early/2017/10/13/202903 (2017).

 69. Zheng, X. et al. A high-performance computing toolset for relatedness and 
principal component analysis of SNP data. Bioinformatics 28, 3326–3328 
(2012).

 70. The International HapMap Consortium. The International HapMap Project. 
Nature 426, 789–796 (2003).

 71. Zheng, X. & Weir, B. S. Eigenanalysis of SNP data with an identity by descent 
interpretation. Theor. Popul. Biol. 107, 65–76 (2016).

 72. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential 
expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).

 73. Slovak, M. L., Theisen, A. & Shaffer, L. G. in The Principles of Clinical 
Cytogenetics (eds Gersen, S. L. & Keagle, M. B.) 23–49 (Springer, New York, 
2013).

 74. Kurtz, S. E. et al. Molecularly targeted drug combinations demonstrate selective 
effectiveness for myeloid- and lymphoid-derived hematologic malignancies. 
Proc. Natl Acad. Sci. USA 114, E7554–E7563 (2017).

 75. Davis, M. I. et al. Comprehensive analysis of kinase inhibitor selectivity.  
Nat. Biotechnol. 29, 1046–1051 (2011).

 76. Blucher, A. S., Choonoo, G., Kulesz-Martin, M., Wu, G. & McWeeney, S. K. 
Evidence-based precision oncology with the cancer targetome. Trends 
Pharmacol. Sci. 38, 1085–1099 (2017).

 77. Gu, Z., Eils, R. & Schlesner, M. Complex heat maps reveal patterns and 
correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 
(2016).

 78. Ritchie, M. E. et al. limma powers differential expression analyses for 
RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

 79. Leek, J. T. & Storey, J. D. Capturing heterogeneity in gene expression studies by 
surrogate variable analysis. PLoS Genet. 3, e161 (2007).

 80. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock  
linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 
(2014).

 81. Parker, H. S., Corrada Bravo, H. & Leek, J. T. Removing batch effects for 
prediction problems with frozen surrogate variable analysis. PeerJ 2, e561 
(2014).

 82. Fraley, C. & Raftery, A. E. Enhanced model-based clustering, density 
estimation, and discriminant analysis software: MCLUST. J. Classif. 20, 
263–286 (2003).

 83. Pison, G., Struyf, A. & Rousseeuw, P. J. Displaying a clustering with CLUSPLOT. 
Comput. Stat. Data Anal. 30, 381–392 (1999).

 84. Wei, T. et al. corrplot: Visualization of a Correlation Matrix. R package version 
0.84 https://github.com/taiyun/corrplot (2017).

 85. Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized 
Linear Models via Coordinate Descent. J. Stat. Softw. 33, 1–22 (2010).

 86. Iorio, F. et al. A landscape of pharmacogenomic interactions in cancer. Cell 166, 
740–754 (2016).

© 2018 Springer Nature Limited. All rights reserved.



ARTICLE RESEARCH

Extended Data Fig. 1 | Genomic landscape of the Beat AML cohort. 
In total, 622 specimens from 531 patients were used for whole-exome 
sequencing. Automated and manual curation steps (described in 
the Methods, Supplementary Information and at http://vizome.org/
additional_figures_BeatAML.html) were used to obtain a final set of high-
confidence variants (annotated in Supplementary Table 7) and the earliest 
sample for each individual patient was used in this analysis. Clinical 
cytogenetics and gene fusion calls from RNA sequencing were used to 
curate recurrent gene rearrangements (Supplementary Information). 
The mutational profile for each patient is shown for frequency-ranked 
mutational events (top) and frequency-ranked gene rearrangements 
(bottom). The mosaic plot is annotated with clinical features of each case, 
such as diagnosis or relapse and de novo or transformed disease states, 
and the first bar chart on the right summarizes the cohort frequencies of 
mutational and gene rearrangement events. The last bar chart on the right 

summarizes the frequency of significant drug–mutation associations for 
the given gene across the cohort with drug sensitivity displayed in red and 
drug resistance displayed in blue. Eleven genes that have not previously 
been reported to be somatically mutated in cancer were observed with 
mutations at approximately 1% cohort frequency: CUB and Sushi 
multiple domains 2 (CSMD2), NAC alpha domain containing (NACAD), 
teneurin transmembrane protein 2 (TENM2), aggrecan (ACAN), ADAM 
metallopeptidase with thrombospondin type 1 motif 7 (ADAMTS7), 
immunoglobulin-like and fibronectin type III domain containing 1 
(IGFN1), neurobeachin-like 2 (NBEAL2), poly(U) binding splicing factor 
60 (PUF60), zinc-finger protein 687 (ZNF687), cadherin EGF LAG seven-
pass G-type receptor 2 (CELSR2) and glutamate ionotropic receptor 
NMDA type subunit 2B (GRIN2B). For the number of samples used to 
correlate each drug with mutations, see Supplementary Table 17.

© 2018 Springer Nature Limited. All rights reserved.



ARTICLERESEARCH

Extended Data Fig. 2 | Transcriptomic landscape of the Beat AML 
cohort. In total, 451 specimens from 411 patients with AML were used for 
RNA-sequencing analyses. The 2,000 genes with the greatest differential 
expression across these patients with AML are displayed as a heat map. 

The heat map is annotated with disease type, ELN risk stratification 
groups, and genetic and cytogenetic features of disease as indicated  
in the key.
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Extended Data Fig. 3 | Functional drug sensitivity landscape of the Beat 
AML cohort. In total, 409 specimens from 363 patients with AML were 
subjected to an ex vivo drug sensitivity assay, in which freshly isolated 
mononuclear cells from blood or bone marrow of patient specimens were 
incubated with graded concentrations of 122 small-molecule inhibitors 
(seven dose points in addition to the no drug control). Probit curve fits 

were used to compute drug-response metrics, and the z score of area 
under the dose–response curve is plotted for each individual patient 
specimen against each drug. Drug sensitivity (blue) and resistance (red) 
are annotated by a colour gradient, with grey indicating no drug data 
available. The heat map is annotated at the top and bottom with major 
clinical, cytogenetic and genetic features of disease as indicated in the key.
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Extended Data Fig. 4 | Drug response in de novo versus transformed 
AML cases. The average inhibitor response AUCs for all cases that were 
de novo (n = 288) versus all cases that transformed from a background of 
myelodysplastic syndromes (n = 111) were compared for every inhibitor 
that had at least three cases with evaluable data in each group. The middle 

point represents the average difference in AUC between the two groups 
with the bars representing the 95% confidence interval. For the sample 
size and statistical results of each drug–sample group correlation, see 
Supplementary Table 20.
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Extended Data Fig. 5 | Pairwise drug sensitivity correlations and 
association with drug family. To understand patterns of small-molecule 
sensitivity against prior annotations of the gene and pathway targets of 
each drug, drugs were placed into drug families according to target genes 
and/or pathways and the Pearson’s correlation value of each drug was 
plotted onto a clustered heat map, showing drugs with similar or dissimilar 

patterns of sensitivity across the patient cohort. Annotations based on 
prior knowledge of the drug families to which each drug could be assigned 
are shown to the right of the heat map with alternating black and grey 
boxes and labels used to aid in tracking. Descriptions of each drug family 
as well as the number of samples used to calculate each pairwise drug 
correlation are found in Supplementary Tables 11, 21.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Binary drug response calls and correlation with 
clinical subsets. a, For the intersect of every specimen with evaluable 
response data for each inhibitor, we created a threshold for binary 
sensitive or resistant calls based on whether the individual specimen 
response fell within the most sensitive 20% of all specimens tested against 
that drug. A matrix plot showing the unsupervised clustering of the binary 
calls can be found at http://vizome.org/additional_figures_BeatAML.html. 
The binary drug-resistance calls for each specimen were combined into a 
single value, representing the proportion of drugs to which an individual 
specimen was sensitive (left) or resistant (right). Specimens were divided 
into ‘Favourable’ and ‘Adverse’ groups based on ELN 2017 criteria to 

determine whether overall drug sensitivity or resistance correlated with 
prognostic features of disease (n = 233 patients). b, The binary drug-
resistance calls for each specimen as in a. Specimens were divided into 
diagnostic groups based on WHO 2016 categories to determine whether 
overall drug sensitivity or resistance correlated with cytogenetic or 
morphologic features of disease (n = 340 patients). a, b, The top and 
bottom points of the box plots show 1.5 times the interquartile range 
(IQR) from the upper and lower lines; the top, middle and bottom lines 
indicate the 75th, median and 25th percentile of the data with the notches 
extending 1.58 × IQR/(√(n)). Specific sample sizes of each group are 
reported in Supplementary Table 22.
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Extended Data Fig. 7 | Integration of genetic events with drug 
sensitivity. a, Circos plot showing AML rearrangements in the centre, 
mutational events in the next concentric ring, and gene expression events 
in the outer ring. The size and width indicates frequency of the event 
and the FDR-corrected Q value of association with drug sensitivity is 
colour-coded (sensitivity (red); resistance (blue)). For each gene, tests 
involving expression were two-sided Student’s t-tests (linear model) of the 
differences between sensitive and resistant samples. For mutational events, 
the average difference in AUC between mutant and wild-type samples 
was determined using two-sided Student’s t-tests from a linear model as 
shown in Fig. 2a. FDR was computed using the Benjamini–Hochberg 
method over all the drugs. The number of samples used to correlate each 

mutational event with drug sensitivity is reported in Supplementary 
Table 17. b, As in Fig. 2a, the average difference in AUC drug response 
between mutant and wild-type cases was determined using a two-sided 
Student’s t-test from a linear model fit (plotted on the x axis and the FDR-
corrected Q value is plotted on the y axis). This analysis shows only FLT3-
ITD-negative cases. FDR was computed using the Benjamini–Hochberg 
method over all the drugs. The number of samples used to correlate each 
mutational event with drug sensitivity is reported in Supplementary 
Table 17. Expanded and interactive plots are available in our online data 
browser (http://www.vizome.org/ and http://vizome.org/additional_
figures_BeatAML.html).
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Extended Data Fig. 8 | Integration of drug sensitivity with genetic 
events. Correlation between drug sensitivity and mutational events. The 
average difference in AUC drug response between mutant and wild-type 
cases was determined using a two-sided Student’s t-test from a linear 
model fit. FDR was computed using the Benjamini–Hochberg method 

over all the drugs. The degree of significance is represented on the y 
axis (sensitivity (red); resistance (blue)). The number of samples used 
to correlate each mutational event with drug sensitivity is reported in 
Supplementary Table 17.

© 2018 Springer Nature Limited. All rights reserved.



ARTICLERESEARCH

Extended Data Fig. 9 | Functional drug sensitivity landscape of the 
Beat AML cohort. a, Co-occurrences with regard to WGCNA gene 
expression clusters and/or mutational events (coefficients) were detected 
by multivariate modelling with respect to ibrutinib response (resistance 
(blue); sensitivity (red)) and the degree of correlation is shown in 
the stacked bar plot (top). All coefficients that appear in 25% of the 
bootstrapped sample sets are shown as segments of the circle. Segment 
width (the coloured ring) corresponds to the percentage of bootstrapped 
samples in which that coefficient appears (quantified above the dotted 
line). The variables appear in descending order clockwise starting at  

12 o’clock. Each link indicates pairwise co-occurrence of mutational  
events and gene expression clusters (width represents frequency of the  
co-occurrence). The largest co-occurrence for each coefficient is 
quantified. b, The capacity of differential gene expression to distinguish 
the 20% most ibrutinib-sensitive (n = 46) from 20% most resistant 
(n = 44) specimens is shown on a principal component plot (n = 239 
patient samples were tested for ibrutinib sensitivity and RNA sequencing). 
For the number of samples used to correlate each drug with gene 
expression and perform LASSO regression, see Supplementary Table 17.
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Data analysis Described in detail in the Methods; BWA MEM version 0.7.10-r789; Genome Analysis Toolkit (v3.3); bundled Picard (v1.120.1579); The 
files contained within the Broad’s bundle 2.8 were used including their version of the build 37 human genome (These files were 
downloaded from: ftp://ftp.broadinstitute.org/bundle/2.8/b37/); • The SAM files were sorted and converted to BAM via SortSam; 
MarkDuplicates was run, marking both lane level standard and optical duplicates; The reads were realigned around indels from the 
reads--RealignerTargetCreator/IndelRealigner; Base Quality Score Recalibration; The resulting BAM files were then aggregated by sample 
and an additional round of MarkDuplicates was carried out at the sample level; Quality control reports were generated using the 
ReportingTools and qrqc; Mutect v1.1.7; Varscan2 v2.4.1; Indels were produced using Varscan2; Variant Effect Predictor v83 against 
GRCh37; vcf2maf v1.6.6 tool; Mutect v1.1.7; Varscan2 v2.4.1; Ensembl VEP v83 on GRCh37; vcf2maf (v1.5.0) program; vcf2maf suite; 
CrossMap; Pindel; UnifiedGenotyper; subjunc aligner (1.5.0-p2; featureCounts (1.5.0-p2); the GRCh37 build provided by the Broad as part 
of the GATK bundle was used; subjunc -i /path/to/reference/ -u -r fastq1 -R fastq2 -o outputBAMFilename -I 5 -T 7 -d 50 -D 600 -S fr 
featureCounts -a Homo_sapiens.GRCh37.75.gtf -o output -F GTF -t exon -g gene_id -s 2 -C -T 10 -p -P -d 50 -D 600 -B BAM_files; weighted 
gene correlation network analysis (WGNCA); conditional quantile normalization procedure; edgeR; RNA-sequencing genotyping protocol 
(as of GATK v3.3); SplitNCigarReads; RealignerTargetCreator/IndelRealigner; TopHat-Fusion (v2.0.14); ‘bicor’ correlation setting the max 
proportion of outliers to .1; dynamicTreeCut; SNPRelate; ComplexHeatmap R package; limma users manual; limma-trend approach; fSVA;  
Mclust; clusplot; DISCOVER; corrplot; lasso approach; glmnet
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Sample size The sample size was chosen to assure sufficient statistical power to capture genetic events observed at 1% or greater disease frequency in 
AML.

Data exclusions Algorithms, filtering, and curation for variant calling, gene expression counts, and drug sensitivity data are described in detail in the Methods; 
Mutect v1.1.7 was run using default parameters except that no limit was placed on the number or frequency of the alternative allele 
frequency in the normal to help address normal contamination; Varscan2 v2.4.1 was run in somatic mode with the recommended filtering 
scheme except as shown in the table below 
Parameter Current 
Initial Calls 
Min coverage 3 
Min variant Frequency .08 
Het P-value .1 
Somatic Calls 
Min tumor frequency .08 
Max normal frequency 1 
High confidence P-value .1 
Post Processing 
Max variant avgrl 0 
Max reference avgrl 0 
Indels and SNVs were produced for the tumor-only samples again using Mutect without a specified normal for consistency and VarScan2 in 
mpileup2indel or mpileup2snp mode respectively; These variants were assigned to their most deleterious effect on Ensembl transcripts using 
Ensembl VEP v83 on GRCh37.  This assignment was done using the same VEP parameters as the vcf2maf (v1.5.0) program; Using the runs 
from MuTect and VarScan, these data were next filtered to keep only the protein impacting SNVs and indels from Mutect and VarScan2 and 
filtered requiring that the variants had at least 5 reads and either not be seen in the exome aggregation consortium (ExAC) or be seen at a 
frequency < .01.  These data present several additional challenges.  First somatic calls cannot be obtained directly from the tumor-only 
samples, second there is always a possibility of tumor contamination of the skin samples for those samples that were paired.  To address 
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these issues and maximize comparability we used an iterative approach. The following was done separately for the two genotypers: 
• An initial set of higher confidence somatic mutations were retrieved from the paired tumor/normal samples requiring tumor variant allele 
frequency (VAF) >= 8% and normal VAF <= 5% in addition to the significance tests already performed by the programs.   
• A list of all candidate mutations was collated requiring that a mutation was either seen in the high confidence somatic set, the set of variants 
from Jaiswal et al or from the lifted over set of variants from the TCGA AML paper. 
• Mutations from the overall set were kept if: 
o The overall number of calls in the paired samples was not more than twice the number of high confidence somatic calls 
o The tumor-only frequency for the calls was less than 50% greater than the number of calls in the paired samples 
o The mutation was seen in Jaiswal/TCGA list 
• High Confidence somatic mutations were kept regardless 
The data from the two genotypers were combined along with FLT3-ITD calls from Pindel. Comparing our variant lists from whole exome 
sequencing versus our custom capture validation sequencing, we noticed, similar to others, that low allele frequency C->A variants (< 15%) 
tended to have poor concordance (7.7%; data not shown) between the initial run and the technical validation run.  These variants were 
removed in these data and along with a curated ‘blacklist’ of known problematic variants/genes including mitochondrial DNA variants.  In 
addition, all variants that were seen in a cumulative list of BeatAML normal samples at a frequency greater than 1% were removed. 
Cumulatively, of this set, 94% of covered single-nucleotide variants were validated with 82% of insertion/deletion calls also being confirmed 
with validation sequencing. 
Manual review was then carried out in the following steps: 
a.) The addition back of all Jaiswal flagged rows. 
b.) Reviewed all TCGA flagged rows for VAF pattern that matched or did not match with known drivers in same specimen. Some TCGA variants 
were added back based on convincing VAF pattern and known pathogenic role, other TCGA variants were kept excluded based on VAF pattern 
unlike known drivers in same specimens. 
c.) Other variants were added back based on other specimens that had the same variant that was still on the include list and VAF pattern 
looked convincing for inclusion. 
d.) All Jaiswal genes with only frameshift/nonsense variants were manually reviewed and missense mutations were manually removed. 
e.) Genes/variants that were on both the include and exclude lists were manually reviewed and were removed if c to a with over 15% VAF, did 
not validate, and/or VAF pattern unlike known drivers in same specimen 
f.) Further review of all genes in summary sheet with cohort frequency of 8 or more (1% of more). Any that were not familiar from knowledge 
of AML literature were manually reviewed for VAF patterns that did or did not match known drivers within same specimens. Those that did 
not match were manually removed. 
After this manual review, additional curated mutations from the UnifiedGenotyper run were added back in along with a curated set of 
variants from tumor-only patients in Jaiswal et al genes; Gene expression count data were collated from featureCounts matrices and all genes 
with no counts across the samples were excluded.  Genes with duplicate gene symbols and those where the counts were < 10 for 90% or 
more of the samples were additionally removed prior to normalization similar to the approach suggested for weighted gene correlation 
network analysis (WGNCA).  Samples for which their median expression was less than 2 standard deviations below the average were removed 
from the dataset (N=10); Quality Control 
The UnifiedGenotyper runs for both the WES and RNA-sequencing were combined into a single VCF file using the GATK CombineVCFs 
functionality. This combined VCF file was converted to a GDS file using SNPRelate (1.12.2). Note the version is an upper bound as several 
versions were used across the entire project).  The overall similarity of the genotypes of each pair of samples were computed, termed identity 
by state (IBS) and a hierarchical clustering was performed using one minus this similarity.  From this clustering and visualization we had 
devised hard cutoffs for further inspection based on the types of data being compared.  For instance samples not meeting the specified IBS 
thresholds (DNA-DNA=.9; RNA-RNA=.83; DNA-RNA=.89) were subject to manual review.  Based on the dendrogram structure as well as the 
clinical/lab information, samples were either excluded, assigned to a different patient ID or in rare cases assigned to a different sample.  It was 
observed that bone marrow transplants between sample collections produced a noticeable but milder effect in these dendrograms and such 
samples were flagged for removal in RNA-sequencing analysis and for treatment as tumor-only samples in the WES analysis as is described in 
the ‘WES Variant Detection’ section; Ex vivo Functional Drug Screen Data Processing -- A given sample was run on one or more panels and 
within each panel, the majority of drugs were run without within-panel replicates.  Two steps were performed to harmonize these data prior 
to model fitting: 
1. A ‘curve-free’ AUC (integration based on fine linear interpolation between the 7 data points themselves) was calculated for those runs with 
within-panel replicates after applying a ceiling of 100 and a floor of 0 for the normalized viability.  The maximum change in AUC amongst the 
replicates was noted and those runs with differences > 100 were removed. 
2. Remaining within-plate replicates had their normalized viability averaged and subject to a ceiling of 100 and floor of 0.  An additional set of 
‘curve-free’ AUCs was computed for sample-inhibitor pairs run on multiple panels.  The maximum change in AUC amongst the across-panel 
replicates was noted and those runs with differences > 75 were removed. 
At this point, the within and across plate replicates for the normalized viability were averaged together and a ceiling of 100 was applied.  From 
the steps above, the floor was already at 0. 
Based on the methodology used in our prior drug combination study{Kurtz, 2017 #917}, a probit regression was fit to all possible run groups 
using the model: 
(normalized_viability / 100) ~ 1 + log10(concentration) 
Where for all groups there were N=7 dose-response measurements. 
The summary measures of curve fit were inspected and cutoffs were devised removing all runs with an AIC > 12 and deviance > 2.  For 
inhibitors that were run using multiple concentration ranges, only the latest concentration range was kept. Finally, these data were compared 
to the AUC values from third order polynomial fits.  Those runs that were discrepant in terms of sensitive/resistant calls were manually 
reviewed as subject to removal; Co-occurrence/mutual exclusivity -- Only mutations seen in at least 10 patients were kept.  The DISCOVER 
method was used to determine significant mutual exclusivity and co-occurrence.  A plot of the co-occurrences was generated using corrplot 
with the odds ratio of the pairwise co-occurrence used to color and scale the circle sizes; Sensitive/Resistant differential expression -- For each 
drug, it was required that at least 3 sensitive and 3 resistant samples using the 20%/20% criteria outlined in the ‘Drug Analysis’ section; 
Integration of both mutation and RNA-Sequencing with Ex vivo Functional Drug Screen -- Mutations (0/1 encoding) and the module 
eigengenes from the WGCNA analysis were used separately and combined together in regression models with coefficients selected using the 
lasso approach as implemented in glmnet.  For each datatype and the combination, only drugs with at least 200 patients samples were tested.  
The 3 datasets were initially randomly separated into training (75%) and test (25%) sets.  Similar to a previous approach, a bootstrap 
aggregation approach was used where the 1,000 bootstraps of the training dataset was generated and for each one, the lasso trained using 
10 fold cross-validation.  Predictions were formed for the test dataset over these bootstrap models and the predicted AUC was averaged.  R2 
values were computed for these aggregated predictions relative to the test AUC values. As performance was seen to be dependent on the 
initial test/training split, we repeated the entire process 100 times, recording the mean and standard deviation of the R2 value as well as the 
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count non-zero coefficients 
All of these criteria were pre-established prior to execution of the analyses.

Replication All data analysis pipelines filtering, exclusions and quality control steps are described above and in detail in the Methods. Each analytical 
approach and result was replicated successfully.

Randomization All samples were assigned numerical identifications with no association to any features of the sample, and for all sequencing batches samples 
were randomized into capture library groups and flow cells.

Blinding All samples were assigned numerical identifications that bore no relevance to sample features or attributes, and all data analyses were 
performed using these de-identified specimen ID numbers

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics This is all documented in great detail in the Methods and in Supplementary Information. Below is a list of covariate population 
characteristics: 
labId 
patientId 
consensus_sex 
inferred_sex 
inferred_ethnicity 
centerID 
CEBPA_Biallelic 
ageAtDiagnosis 
isRelapse 
isDenovo 
isTransformed 
finalFusion 
specificDxAtAcquisition_MDSMPN 
nonAML_MDSMPN_specificDxAtAcquisition 
priorMalignancyNonMyeloid 
priorMalignancyType 
cumulativeChemo 
priorMalignancyRadiationTx 
priorMDS 
priorMDSMoreThanTwoMths 
priorMDSMPN 
priorMDSMPNMoreThanTwoMths 
priorMPN 
priorMPNMoreThanTwoMths 
dxAtInclusion 
specificDxAtInclusion 
ELN2017 
ELN2008 
dxAtSpecimenAcquisition 
specificDxAtAcquisition 
ageAtSpecimenAcquisition 
timeOfSampleCollectionRelativeToInclusion 
specimenGroups 
specimenType 
rnaSeq 
exomeSeq 
totalDrug 
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rnaSeqAnalysis 
analysisExomeSeq 
analysisDrug 
cumulativeTreatmentTypeCount 
cumulativeTreatmentTypes 
cumulativeTreatmentRegimenCount 
cumulativeTreatmentRegimens 
cumulativeTreatmentStageCount 
cumulativeTreatmentStages 
responseToInductionTx 
typeInductionTx 
responseDurationToInductionTx 
mostRecentTreatmentType 
currentRegimen 
currentStage 
mostRecentTreatmentDuration 
vitalStatus 
overallSurvival 
causeOfDeath 
any_different_labs 
any_different_labs_also_beataml 
different_lab_ids 
different_id_karyotype_interval 
%.Basophils.in.PB 
%.Blasts.in.BM 
%.Blasts.in.PB 
%.Eosinophils.in.PB 
%.Immature.Granulocytes.in.PB 
%.Lymphocytes.in.PB 
%.Monocytes.in.PB 
%.Neutrophils.in.PB 
%.Nucleated.RBCs.in.PB 
ALT 
AST 
Albumin 
Creatinine 
FAB/Blast.Morphology 
Hematocrit 
Hemoglobin 
Karyotype 
LDH 
MCV 
Other.Cytogenetics 
Platelet.Count 
Surface.Antigens.(Immunohistochemical.Stains) 
Total.Protein 
WBC.Count 
any_different_cgs 
any_different_cgs_also_beataml 
different_cgs_lab_ids 
FLT3-ITD 
NPM1 
ABL1 
ASXL1 
ASXL2 
ATM 
BCOR 
BCORL1 
BRAF 
BRCA2 
CALR 
CBL 
CCND2 
CCND3 
CD36 
CEBPA 
CHEK2 
CIITA 
CREBBP 
CSF3R 
CTCF 
CUX1 
DNMT3A 
EP300 
ETV6 
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EZH2 
FBXW7 
FLT3 
GATA1 
GATA2 
IDH1 
IDH2 
IKZF1 
JAK1 
JAK2 
JAK3 
KDM6A 
KIT 
KMT2A 
KMT2D 
KRAS 
MEN1 
MPL 
MUTYH 
MYD88 
NF1 
NOTCH1 
NRAS 
PAX5 
PDGFRB 
PHF6 
POT1 
PRDM1 
PTPN11 
RAD21 
ROS1 
RUNX1 
SETBP1 
SF3B1 
SMC1A 
SOCS1 
SRSF2 
STAG2 
STAT3 
SUZ12 
TCL1A 
TET2 
TP53 
TYK2 
U2AF1 
WT1 
ZRSR2

Recruitment All patients with a diagnosis of acute myeloid leukemia at any of the partner institutions were eligible for and consented for the 
study. No exclusionary criteria existed.
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