KB-0742 Is Active in Preclinical *MYC*-High Models of TNBC, Ovarian, and DLBCL Cancers

Melinda A. L. Day, Douglas C. Saffran, Tressa Hood, Christina Noe, Suha Naffar-Abu Amara, Akul Singhania, Akanksha Pandey, Nikolaus Obholzer, Charles Y. Lin, Pavan Kumar, Jorge DiMartino Kronos Bio, Inc., San Mateo, CA

Abstract

- Previously, we profiled pan-cancer sensitivity to KB-0742, a potent, selective, and orally bioavailable small-molecule inhibitor of cyclin-dependent kinase 9 (CDK9), and identified *MYC*-amplified cancers as being especially sensitive to KB-0742. We are currently in dose escalation with KB-0742 in a phase 1/2 clinical trial (NCT04718675). Once a recommended phase 2 dose is determined, we plan to move into expansion cohorts, including one cohort for *MYC*-amplified/dependent tumors. To prioritize the tumor types for the *MYC*-amplified expansion cohort, we evaluated 11 different tumor types using immortalized cell lines, patient-derived cell lines (PDCs), patient-derived organoids (PDOs), and patient-derived xenografts (PDXs). Of the 11 cancer types, triple-negative breast cancer (TNBC), ovarian cancer, and lymphoma showed good responses to KB-0742 treatment. For TNBC and ovarian cancer, immortalized cell lines and PDCs indicated lower half maximal inhibitory concentration (IC_{50}) values with increased *MYC* amplification or expression, and in vivo assessments using 15 PDX models showed good correlation of tumor growth inhibition (TGI) and MYC amplification/expression. Two PDO models of TNBC with different treatment histories were also treated with KB-0742 and compared to 4 standard-of-care (SOC) compounds; KB-0742 showed much greater activity in the models, with maximal inhibition rates of 100% and 89%.
- Cell-line screens of blood cancer-derived cell lines showed that lymphocyte-derived cell lines were the most sensitive to KB-0742 when compared with all other cancer types. We tested several PDX models for response to our compound. Treatment with KB-0742 resulted in TGIs of over 50% in several lymphoma models, including a TGI of 56% in 1 model of double-hit diffuse large B-cell lymphoma (DLBCL).
- These data support the selection of TNBC, ovarian cancer, and lymphoma for the MYC-amplified expansion cohort in the KB-0742 phase 1/2 clinical trial (NCT04718675).

(A) Lineage-specific transcription factors recruit CDK9 to the MYC super enhancer, driving high levels of *MYC* expression. Center: Elevated oncogenic MYC activates lineage-specific transcription factors, creating a positive feedback loop. (B) CDK9 is an essential cofactor of MYC and allows MYC to drive both tumor-specific and normal gene expression programs.

Evaluation of MYC and KB-0742 Activity Across a Variety of Models Representing 11 Cancer Types Identified TNBC, Ovarian, and Lymphoma as Prioritized Indications

Indication	Immortalized Cell Lines	PDCs	PDOs	PDXs	Overall Assessment
TNBC					
Ovarian					
Lymphoma					

Correlation between MYC amplification/high expression and KB-0742 activity was assessed in 11 different indications using 4 model platforms (cell lines, PDCs, PDOs, and PDXs). Green dots () indicate statistically significant correlation between MYC expression and sensitivity to KB-0742; *blue dots* () indicate trends; and *gray dots* () indicate no available data. From this analysis, we identified TNBC, ovarian cancer, and lymphoma as potential expansion cohorts.

line models. (A) Twenty-two TNBC cell lines were evaluated using the Broad PRISM platform. Cell lines that had *MYC* copy number amplifications (*red dots* indicate 3 or more) trended with lower IC_{50} values than nonamplified cell lines, and IC₅₀ values trended with MYC RNA expression. (B) Forty ovarian cell lines were evaluated using the Broad PRISM platform. Cell lines with higher RNA expression of MYC trended with lower IC₅₀ values. (C) Fifteen PDC models of ovarian cancer were treated with increasing doses of KB-0742. Consistent with the PRISM screen, PDCs with higher expression of *MYC* trended with lower IC_{50} values.

KB-0742 Is Active Against Chemotherapy-Resistant TNBC PDOs

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Model Number	Treatment History	Cisplatin		Pemetrexed		Paclitaxel		Gemcitabine		KB-0742	
KOBR-011 EPI + Pacl 6 cycles No effect ~0.005 31.56 25.67 59.99 3.49 100 KOBR-011 Pacl + Carbo No effect 5 44.40 54.50 45.00 34.9 100			IC ₅₀	Inh%	IC ₅₀	Inh%	IC ₅₀	Inh%	IC ₅₀	Inh%	IC ₅₀	Inh%
Pacl + Carbo	KOBR-011	EPI + Pacl 6 cycles	No offect			~0.005	31.56	25.67	59.99	3.49	100	
KOBR-472 >5 14.16 ~21.56 15.06 3.42 89	KOBR-472	Pacl + Carbo 4 cycles	Νο επεςτ				>5	14.16	~21.56	15.06	3.42	89

KB-0742 shows greater activity in 2 PDO models of TNBC compared with 4 SOC compounds. KB-0742 gave significantly higher maximum inhibition rates in both models than all the SOC compounds tested.

Presented at the American Association for Cancer Research Annual Meeting; April 8-13, 2022; New Orleans, LA.

MYC Exp (log2(TPM+1))

Carbo = carboplatin; EPI = epirubicin; Inh% = percent inhibition; PacI = paclitaxel.

Antitumor Activity Observed With KB-0742 in In Vivo Models of **TNBC and Ovarian Cancer**

KB-0742 shows antitumor activity in vivo, and response correlates with MYC levels. (A) Three PDX models of TNBC were treated with either vehicle, SOC, or KB-0742 at 60 mg/kg orally (PO), 3 days on/4 days off. (B) TGI rates correlated with MYC copy number. (C) Eight ovarian cancer PDX models were treated with either vehicle or KB-0742 at 60 mg/kg PO (3 days on/4 days off), and tumor growth stasis and regression were observed in 3/8 models. (D) The TGI rates in the models correlated with the expression of MYC family proteins (cMYC, MYCL, MYCN), with higher expression resulting in greater TGI rates. KB-0742 was well tolerated in all models with no body weight loss of over 15% observed.

Cispl = cisplatin; Gem = gemcitabine.

KB-0742 shows antitumor activity in models of lymphoma. (A) In a 300 cell-line screen, lymphocyte-derived cell lines were more sensitive to KB-0742 than other hematopoietic and solid tumor cell lines, observed by a lower mean IC_{50} . *Error bars* represent standard error of the mean. (B) Three PDX models of lymphoma were treated with either vehicle or KB-0742 at 60 mg/kg PO, 3 days on/4 days off. KB-0742 treatment resulted in TGI rates of 68%, 80%, and 98% (left to right). (C) A PDX model of double-hit lymphoma was treated with either vehicle or KB-0742 at 60 mg/kg PO, 3 days on/4 days off. KB-0742 treatment resulted in a TGI rate of 56%. (D) Similar to all of the models, KB-0742 was well tolerated in the double-hit lymphoma PDX with little variation in body weight.

Conclusions

- Of the 11 cancer types screened for MYC-dependent sensitivity to KB-0742, TNBC and ovarian cancer were identified as showing the strongest correlation between sensitivity and MYC expression.
- Several ovarian cancer PDX models showed tumor stasis and/or regression.
- not clearly dependent upon *MYC* expression levels. There is ongoing work to better assess the relationship between MYC expression and response to KB-0742.
- KB-0742 showed antitumor activity of greater than 50% TGI in several PDX models of lymphoma, including 1 double-hit model.
- KB-0742 treatment showed target engagement in pan-tumor PDX models observed by the reduction of pSER2 levels and changes in gene expression.

A phase 1/2 clinical trial of KB-0742 (NCT04718675) is currently recruiting patients with relapsed or refractory solid tumors or non-Hodgkin lymphoma.

Acknowledgements: The authors would like to thank K2 Oncology (Beijing, China) for patient-derived organoid cultures; Imagen Therapeutics (Manchester, UK) for patient-derived cell line studies; Eurofins (Brussels, Belgium) for immortalized cell line studies; Broad Institute of MIT and Harvard (Cambridge, MA) for immortalized cell line studies; Champions Oncology (Rockville, MD) for patient-derived xenograft models; Crown Bioscience (San Diego, CA) for patient-derived xenograft models; Qiagen (Germantown, MD) for sequencing services; NovoVita Histopath Laboratory (Boston, MA) for immunohistochemistry services.

• Lymphoma was enriched for sensitivity to KB-0742 compared with other cancer types, but it was